期刊文献+

基于小波变换的图像修复算法 被引量:3

IMAGE REPAIRING ALGORITHM BY USE OF WAVELET TRANSFORM
下载PDF
导出
摘要 传统的图像修复算法速度慢,对大面积的破损区域修复效果较差.本文针对这一缺点,首先对待修复图像进行小波分解,使得图像的破损区域在低频部分留下的空洞大为缩小,然后利用基于快速行进法(FMM)的图像修复算法修复低频部分的破损区域,再利用低频信息来预测相应的高频信息,最后进行小波重构,并对受损部分进行自然化处理,得到修复的图像.仿真实验结果表明,本文提出的算法速度快,修复结果基本恢复了原有的视觉效果. To overcome the shortcoming of conventional methods,being slow and incompetent for large area repairing task ,a new image repairing algorithm is proposed in this paper. First,the image to be repaired is decomposed by means of wavelet,which makes the region to be repaired dwindle to a great extent. Then, the low frequency part of the region is made to be repaired with the help of image repairing algorithm based on Fast Marching Method (FMM), and the relevant high frequency information is predicted with the help of low frequency information. Finally,the image is reconstructed with wavelet,and the repaired region is subjected to natural treatment. Thus, the repaired image is obtained. Results show that this algorithm can be operated at a high speed and can restore the Original visual effect on the whole.
出处 《内蒙古工业大学学报(自然科学版)》 2008年第4期259-263,共5页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 内蒙古工业大学重点研究项目 编号:ZD200601 内蒙古自治区自然科学基金项目资助 编号:200711020801
关键词 图像修复 小波分解 小波重构 快速行进法 image repainting wavelet decomposition wavelet reconstruction fast marching method
  • 相关文献

参考文献13

  • 1Bertalmo M, Sapiro G ,Caselles V ,et al. Image lnpainting [C]. Computer Graphics, SIGGRAPH' 00,2000,417-424. 被引量:1
  • 2Chan T, Shen J. Non-Texture Inpainting by Curvature-Driven Diffusions (CCD) [J]. Journal of Visual Communication and Image Representation, 2003,12 (4) :436 -449. 被引量:1
  • 3Chan T,Shen J. Mathematical Models for Local Non-texture lnpainting [J]. SIAM Journal Applied Mathematics, 2002,62(3) : 1019- 1043. 被引量:1
  • 4Chan T, Shen J. Kang S. Euler's Elastica and Curvature Based Inpainting [J]. SIAM Journal Applied Mathematics, 2002,63 (2) : 564- 592. 被引量:1
  • 5Tsai A, Yezzi J,Willsky A S,et al. Curve Evolution Implementation of the Mumford-shah Fnetional for Image Segmentation,Denoising.Interpolation and Magnification [J]. IEEE Transactions On Image Processing, 2002,11 (2) :68-76. 被引量:1
  • 6Chan T,Ng M ,Yan A ,et al. Superresolution Image Reconstruction Using Fast Inpainting Algorithms [J]. Applied and Computational Harmonic Analysis, 2007, 23 (1) : 3- 24. 被引量:1
  • 7Chan T,Shen,J,Zhou Hao-Min,et al. Total Variation Wavelet Inpainting [J]. Journal of Mathematical Image and Vision,2006,25 (1) : 107- 125. 被引量:1
  • 8Alexandrua Telea. An Image lnpainting Technique Based on the Fast Matching Method EJ]- Journals of Graphics tools,2004,9(1) :25-36. 被引量:1
  • 9Celia A. Zorzo Bareelos, Mareos Aurelio Batista. Image Restoration Using Digital lnpainting and Noise Removal [J]. Image and Vision Computing,2007,25(1):61-69. 被引量:1
  • 10Calvetti D, Sgallari F, Somersalo E. Image Inpainting wth Structural Bootstrap Priors [J]. Image and Vision Computing,2006 ,Z4(7) : 782-793. 被引量:1

二级参考文献6

  • 1[1]Chan T, Shen F. Mathematical Models for Local Non-texture Inpaintings [J]. SIAM Journal on Applied Mathematics, 2002, 62: 1019-1043. 被引量:1
  • 2[2]Bertalmio M, et al. Image Inpainting [A]. SIGGRAPH [C]. 2000, 1: 417-424. 被引量:1
  • 3[3]Criminisi A, Perez P, Toyama K. Object Removal by Exemplar-Based Inpainting [J]. IEEE Proc. CVPR, 2003, 2: 721-728. 被引量:1
  • 4[4]Masnou S. Disocclusion: A Variational Approach Using Level Lines [J]. IEEE Trans. Image Processing, 2002, 11: 68-76. 被引量:1
  • 5[5]Masnou S, Morel J. Level Lines Based Disocclusion [A]. IEEE Proc. ICIP [C]. 1998, 3: 259-263. 被引量:1
  • 6[6]Levin A, Zomet A, Weiss Y. Learning How to Inpaint from Global Image Statistics [A]. International Conference on Computer Vision [C]. 2003, 1: 305-312. 被引量:1

共引文献51

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部