摘要
为弥补传统联邦滤波器实用性不好,缺乏对对象模型和传感器噪声的自适应估计能力的缺陷,利用自适应Kalman滤波算法的思想,结合联邦滤波器本身的算法结构,对联邦滤波器进行改进,使之具有很强的自适应性,能够自适应地计算出模型噪声和传感器噪声的协方差阵。给出了基于自适应Kalman滤波算法的联邦滤波器的计算架构,其他优秀的自适应算法均可按相同的方式加入该架构中。最后通过仿真计算验证了该算法的有效性。
To solve the traditional federated filter's short of practicability, lack of the ability to adapt to object model and noise of sensors, based on the idea of adaptive Kalman filtering algorithm. Combine the algorithm of the federated filter, the federated filter is improved to become more adaptive, can adaptively compute the covariance matrix of the model and sensors noise. And the algorithm framework of the federated filter based on the adaptive Kalman filtering algorithm is presented, other perfect adaptive algorithm can be added to this framework. The efficiency of this algorithm is validated by the simulation.
出处
《火力与指挥控制》
CSCD
北大核心
2008年第12期88-90,94,共4页
Fire Control & Command Control