期刊文献+

基于Mean Shift的抗遮挡运动目标跟踪算法 被引量:8

Anti-occlusion Motive Target Tracking Arithmetic Based on Mean Shift
下载PDF
导出
摘要 采用Mean Shift和Kalman滤波器相结合来处理动态背景下目标跟踪问题。首先利用Kalman滤波器进行预估计获得每帧Mean Shift算法的起始位置。由图像差分法得到物体轮廓,同时定义了相似因子判断物体是否发生遮挡。当发生遮挡时,根据物体运动状态不同,对颜色信息和运动信息分别赋予不同权值来预测物体在当前帧的位置并作为下一帧预测的起点。此时,目标位置的线性预测替代了Kalman滤波器的作用。实验证明,新算法可实现对快速运动目标的跟踪,对遮挡也有很好的稳健性。 An algorithm for tracking fast motion objects under dynamic backgrounds is proposed, which combines Mean Shift and Kalman filter. At first, the Kalman filter is used to get the predicted starting position of Mean Shift in every frame. And then, the contour is got with the image difference method. At the same time, the similarity factor is defined to determine whether the tracking target is occluded. When the occlusion happened, the color information and motion information are assigned with different weight values to predict the position of the tracking target in the current frame and set it as the start position of next frame ac- cording to different motion state of the target. In such situation, the Kalman prediction is substituted by the linear prediction of the target. The test results show that this algorithm can track the fast-moving target well and also has better robust for occlusion.
出处 《电视技术》 北大核心 2008年第12期82-85,共4页 Video Engineering
基金 国家杰出青年自然科学基金(60625103 60702044)
关键词 目标跟踪 Mean SHIFT算法 KALMAN滤波器 相似因子 target tracking Mean Shift algorithm Kalman filter , similarity factor
  • 相关文献

参考文献7

二级参考文献18

  • 1[1]Stauffer C,Grimson W E L.Learning Patterns of Activity Using Real-time Tracking[J].IEEE Trans on PAMI,2002,22(8):747. 被引量:1
  • 2[2]DELLAERT F,THORPE C.Robust Car Tracking Using Kalman Filtering and Bayesian Templates[J].Proc.SPIE Vd.3207,Intelligent Transportation Systems,2000,19(3):72. 被引量:1
  • 3[4]PIOVOSO M,PHILLIP A,LAPLANTE L,et al.Kalman Filter Recipes for Real-time Image Processing[J].Real-time Imaging,2003,9 (6):433. 被引量:1
  • 4[5]LI Pei-hua,ZHANG Tian-wen,MA Bo.Unscented Kalman Filter for Visual Cure Tracking[J].Image and Vison Computing,2004,22(2):157. 被引量:1
  • 5D. COMANICIU, P. MEER. Mean shift: a robust application toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619. 被引量:1
  • 6D. COMANICIU, P. MEER. Robust analysis of feature spaces: color image segmentation [A]. Proc, 1997 IEEE conf.Computer Vision and Pattern Recognition[C]. San Juan, Puerto Rico: IEEE, 1997. 750-755. 被引量:1
  • 7Changjiang YANG, Ramani DURAISWAMI, Larry DAVIS. Similarity measure for nonparametric kernel density based object tracking[A]. Eighteenth Annual Conference on Neural Information Processing Systems[C]. Victoria, British Columbia,Canada: NIPS, 2004 被引量:1
  • 8Robert T. COLLINS. Mean-shift blob tracking through scale space [J]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03), 2003, 2: 234-240. 被引量:1
  • 9K. NUMMIARO, E. Koller-MEIER, L.Van GOOL. Color features for tracking non-rigid objects. Special Issue on Visual Surveillance [J]. Chinese Journal of Automation, 2003, 29(3): 345-355. 被引量:1
  • 10D. COMANICIU, V. RAMESH, E MEER. Kernel-based object tracking [J]. IEEE Transactions. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1

共引文献80

同被引文献66

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部