期刊文献+

观点挖掘综述 被引量:16

Survey on opinion mining
下载PDF
导出
摘要 互联网包含着大量的非结构化文本信息,分析这些文本信息是非常重要的。观点挖掘是当前科研人员研究的一个热点,因为需要进行自然语言处理,观点挖掘非常具有挑战性,然而它有广阔的应用前景。比如各公司总是希望能够及时获取公众或者消费者对于它们产品和服务的评价,以便进一步改进这些产品和服务。为此,对观点挖掘的各方面进行了较详细的描述。其内容主要包括评价文本的挖掘、观点搜索以及观点作弊。 The World Wide Web contains a huge amount of information in unstructured texts. Analyzing these texts is of great importance. Nowadays, opinion mining is becoming a research hot spot. This task is not only technically challenging because of the need for natural language processing, but also very useful in practice. For example, businesses always want to find public or consumer opinions on their products and services. Once getting such information, they can further improve their products and services. This paper elaborately interpreted almost all aspects of opinion mining on the Web. Those included aspects were three mining tasks of evaluative texts, opinion search and opinion spam.
出处 《计算机应用研究》 CSCD 北大核心 2009年第1期25-29,共5页 Application Research of Computers
基金 天津科技大学引进人才科研启动基金资助项目(20080418) 天津市高等学校科技发展基金计划资助项目(20071303) 吉林省科技发展计划资助项目(20070533)
关键词 观点挖掘 情感分类 评论 观点搜索 观点作弊 opinion mining sentiment classification review opinion search opinion spam
  • 相关文献

参考文献8

  • 1TURNEY P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [ C ]//Proc of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2002:417- 424. 被引量:1
  • 2SANTORINI B. Part-of-speech tagging guidelines for the Penn Treebank project[ M]. Pennsylvania: ACM Press, 1990. 被引量:1
  • 3PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of EMNLP' 02. Philadelphia: Association for Computational Linguistics, 2002 : 79 - 86. 被引量:1
  • 4DAVE K, LAWRENCE S, PENNOCK D. Mining the peanut gallery: opinion extraction and sentiment classification of product reviews [ C]//Proc of the 12th Intl World Wide Web Conference. [ S. l. ] : ACM Press, 2003 : 519-528. 被引量:1
  • 5HU Min-qing, LIU Bing. Opinion feature extraction using class sequential rules[ C ]//Proc of the Spring Symposium on Computational Approaches to Analyzing Weblogs. Stanford:[ s. n. ] , 2006:11-21. 被引量:1
  • 6LIU Bing, HU Min-qing, CHENG Jun-sheng. Opinion observer: analyzing and comparing opinions on the Web[ C]//Proc of the 14th Intl World Wide Web Conference. New York: ACM Press, 2005:342- 351. 被引量:1
  • 7HU Min-qing, LIU Bing. Mining and summarizing customer reviews [ C ]//Proc of ACM SIGKDD Intl Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004:168-177. 被引量:1
  • 8JINDAL N, LIU Bing. Mining comparative sentences and relations [ C ]//Proc of National Conference on Artificial Intelligence. Boston : AAAI Press, 2006 : 101 - 113. 被引量:1

同被引文献153

引证文献16

二级引证文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部