期刊文献+

基于高阶谱估计故障电弧早期信息特征提取 被引量:4

Extraction of Early Features for Fault Arcs Based on Higher-order Spectrum
下载PDF
导出
摘要 开关柜内部的故障电弧是一种频发性、灾难性的严重故障,传统的故障电弧保护方案都是在发生燃弧之后开始报警并切断断路器,会造成一定的经济损失。实验研究表明,放电声响能作为故障电弧发生之前的主要表征信息,放电声响经过声道调制和周围障碍物反射后形成复杂的声音混合体,且放电声响湮没在复杂的背景噪声中。用双谱对故障电弧早期放电声响进行了分析,并以B-P神经网络为分类器提取放电声响。结果表明,双谱能有效地识别放电声响,为进一步以放电声响为判据建立故障电弧早期预警系统奠定基础。 In switch tank, fault arcs are constant and disastrous trouble. Traditionally, an alarm was given and the circuit was cut off only after aflame arcing was generated, which caused considerable economic loss. Switch tank and electric facilities would be destructed by aflame arcing. Experiments show that the pre -arc sound serving as the main signal forms complicated compound sound after being adjusted by sound regulator and reflected by surrounding barriers and is submerged in background noise. In this paper, pre -arcing sounds are analyzed by using Bispectrum. Three layers B - P artificial neural network is established. Results indicate that feature of Bispectrum can recognize pre -arcing sounds effectively with arcing sounds generated before aflame arcing. The system of fault arcs early warning system is established, which avoids endangerment brought about by aflame arcing and establishes good foundation for fault arcs protection in switch tank.
出处 《淮阴工学院学报》 CAS 2008年第5期47-50,共4页 Journal of Huaiyin Institute of Technology
基金 福建省科技计划重点项目(2005H036)
关键词 故障电弧 双谱 放电声响 累积量 神经网络 fault arcs bispectrum pre - arc sounds cumulant neural network
  • 相关文献

参考文献7

二级参考文献32

  • 1尚秋峰,杨以涵,李士林,尹璐旻,齐郑.Duffing振子信号检测方法用于配电网单相故障接地保护[J].电力系统自动化,2004,18(13):64-68. 被引量:13
  • 2蔡彬,陈德桂,吴锐,王鑫伟,高冬梅,陈卫国.开关柜内部故障电弧的在线检测和保护装置[J].电工技术学报,2005,20(10):83-87. 被引量:78
  • 3杨福生,随机信号分析,1990年 被引量:1
  • 4吴国清,声学学报,1980年,5卷,2期,100页 被引量:1
  • 5凌福根,随机数据分析方法,1976年 被引量:1
  • 6Klaus D W, Balnaves D . Internal faults in distribution switchgear - where are we now and where are we going. Trends in Distribution Switchgear, Conference Publication No. 459 IEE 1998: 68~72. 被引量:1
  • 7Sidhu T S, Singh G, Sachdev M S. Protection of power system apparatus against arcing faults. 1998 IEEE Region 10th International Conference on Global Connectivity in Energy, Computer, Communication and Control, 1998: 436~439. 被引量:1
  • 8Sidhu T S, Sachdev M S, Sagoo G S. Detection and location of low-level arcing faults in metal-clad electrical apparatus. Developments in Power System Protection, Conference Publication No. 479 IEE, 2001: 157~160. 被引量:1
  • 9Sidhu T S, Sagoo G S, Sachdev M S. Multi-sensor secondary device for detection of low-level arcing faults in metal-clad MCC switchgear panel. IEEE Transactions on Power Delivery, 2002, 17(1): 129~134. 被引量:1
  • 10Nakano S, Tsubaki T, Hironaka S. Applying a voice recognition system for SF6 gas insulated switchgear's inspection/maintenance services. IEEE Transactions on Power Delivery, 2001, 16(4): 534~538. 被引量:1

共引文献110

同被引文献27

  • 1蔡彬,陈德桂,吴锐,王鑫伟,高冬梅,陈卫国.开关柜内部故障电弧的在线检测和保护装置[J].电工技术学报,2005,20(10):83-87. 被引量:78
  • 2李庚银,罗艳,周明,王宇宾.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30. 被引量:88
  • 3李军,孙彦彬.时间序列计量经济模型的平稳性检验[J].统计与决策,2007,23(7):18-19. 被引量:19
  • 4KAWADA M, TUNGKANAWANICH A, KAWASAKI Z I, et al. Detection of Wide-band E-M Signals Emitted from Partial Discharge Occurring in GIS Using Wavelet Transform[J]. IEEE Transactions on Power Delivery, 2000,15(2):467-471. 被引量:1
  • 5TUNGLANAWANICH A, KAWASAKI Z I, ABE J, etal. location of Partial Discharge Source on Distribution Line by Measuring Emitted Pulse-Train Electromagnetic Waves[C]// IEEE Power Engineering Soeiety Winter Meeting, 2000:2 453-2 458. 被引量:1
  • 6SUN Y, STEWART B G, KEMP I J. Time-frequency Analysis of RF Partial Discharge Signals Using Wavelet Transforms[C]// 39th International Universities Power Engineering Conference, 2004: 154-159. 被引量:1
  • 7CAIROTII C, DURANTAY L, MOTEURS A, et al. Interest & Utility of Time Frequency and Time Scale Transforms in Partial Discharges Analysis[C]// Conference Record of the 2002 IEEE International Symposium on Electrical Insulation Boston,USA, 2002:516-522. 被引量:1
  • 8HINICH M J, WILSON G R. Detection of Non-gaussian Signals in Non-gaussian Noise Using the Bispectrum[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990,38 (7):1 126- 1 131. 被引量:1
  • 9MENDEL M. Tutorial on Higher-order Statistics (spectra) in Signal Processing and System Theory: Theory Results and Some Applications[J]. Proc. IEEE, 1991 (79):278-305. 被引量:1
  • 10COHEN L. Time-frequency Distribution-A Review [J]. Proc. IEEE, 1989,77(7): 941-981. 被引量:1

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部