期刊文献+

复杂传热规律下热声制冷机最优性能 被引量:3

Optimal performance of thermoacoustic refrigerator with complex heat transfer
原文传递
导出
摘要 建立了复杂传热规律下广义不可逆热声制冷机的循环模型,运用有限时间热力学方法导出了存在热阻、热漏和其他内不可逆性时,传热指数为复数的热声制冷机制冷率与制冷系数的解析式,分析了传热指数中实部和虚部对热声制冷机最优性能的影响,通过数值计算对不同损失和不同传热规律情况下的热声制冷机最佳制冷系数和制冷率的变化规律进行了比较分析. A cycle model for a generalized irreversible thermoacoustic refrigerator with heat resistance was built. The analytical formulas of the cooling load and the coefficient of performance (COP) of the thermoacoustic refrigerator were derived, in which heat resistance, heat leakage and internal dissipation were considered. Both the real part and the imaginary part of the heat transfer exponent change COP versus the cooling rate relationship quantitatively. The comparative analysis of the influences of various factors on the performance optimization of the generalized irreversible thermoacoustic refrigerator was carried out by the detailed numerical examples.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期91-93,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50676068) 湖北省教育厅重点资助项目(D200615002)
关键词 制冷机 传热 制冷系数 循环模型 制冷率 优化 refrigerators heat transfer performance coefficient cycle models cooling rate optimization
  • 相关文献

参考文献11

  • 1Yazaki T, Iwata A, Mackawa T, et al. Traveling wave thermoacoustic engine in a looped tube [J]. Physical Review Letters, 1998, 81 (15): 3 128- 3 131. 被引量:1
  • 2Back S, Swift G W. A thermoacoustic stirling wave heat engine[J]. Natural, 1999, 399:335-338. 被引量:1
  • 3Tijani M E H, Zeegers J C H, De Waele A T A M. Design of thermoaeoustie refrigerators[J]. Cryogenics, 2002, 42(1) :49-57. 被引量:1
  • 4Zhou G, Li Q, Li Z Y, et al. A miniature thermoaeoustic stirling engine[J] Energy Conversion and Management, 2008, 49(6): 1 785-1 792. 被引量:1
  • 5陈文振 孙丰瑞 陈林根.qccT^n时卡诺制冷机的最佳ε和R.科学通报,1990,35(23):18-37. 被引量:1
  • 6陈林根,孙丰瑞.不可逆卡诺制冷机的最佳制冷率、制冷系数特性[J].真空与低温,1995,1(4):219-223. 被引量:1
  • 7Chen L, Sun F, Wu C. Effect of heat transfer law on the performance of a generalized irreversible Carnot refrigerator [J].J Non-Equibri Thermodynamics, 2001, 26(3): 291-304. 被引量:1
  • 8Kornhauser A A, Smith J L. Application of a complex Nusseh number to heat transfer during compression and expansion[J]. Trans ASME J Heat Transfer, 1994, 116(2): 536-542. 被引量:1
  • 9Wu F, Wu C, Guo F, et al. Optimization of a thermoacoustic engine with a complex heat transfer exponent[J]. Entropy, 2003, 5(5):444-451. 被引量:1
  • 10Chen L, Wu F, Li Q, et al. Exergetic efficiency optimization of a thermoacoustic cooler[J]. Journal of Mechanical Engineering Science, 2007, 221 ( 11 ) : 1 339-1 343. 被引量:1

二级参考文献12

同被引文献23

  • 1鄂青,刘益才,郭方中.微型热声制冷机设计方案研究[J].真空与低温,2004,10(2):103-107. 被引量:5
  • 2沈国清,于岩,杨永钊.热声热机的热力学分析[J].节能,2006,25(1):21-24. 被引量:1
  • 3Swift G W.Thermoacoustic engines[J].The Journal of the Acoustical Society of America,1988,84(4):1145-1165. 被引量:1
  • 4Ceperly P H.Gain and efficiency of a shore traveling wave heat engine[J].The Journal of the Acoustical Society of America,1985,77(3):1239-1243. 被引量:1
  • 5Yazaki T,Iwata A,Mackawa T,et al.Traveling wave thermoacoustic engine in a looped tube[J].Physical Review Letters,1998,81(15):3128-3131. 被引量:1
  • 6Back S,Swift G W.A thermoacoustic stirling wave heat engine[J].Nature,1999,399:335-338. 被引量:1
  • 7Qin X,Chen L,Sun F,et al.Frequency-dependent performance of an endoreversible Carnot engine with a linear phenomenological heat-transfer law[J].Applied Energy,2005,81(4):365-375. 被引量:1
  • 8Zhu X,Chen L,Sun F,et al.Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot engine[J].Open Systems&Information Dynamics,2005,12(3):249-260. 被引量:1
  • 9Chen L,Zhu X,Sun F,et al.Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines[J].Applied Energy,2006,83(6):573-582. 被引量:1
  • 10Chen L,Li J,Sun F.Generalized irreversible heat-engine experiencing a complex heat-transfer law[J].Applied Energy,2008,85(1):52-60. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部