期刊文献+

随机截断下分布函数的光滑PL估计 被引量:1

Smooth PL Estimator of Distribution Function under Random Truncation Data
下载PDF
导出
摘要 本文在随机左截断情形下,对非参数光滑PL估计Fn,光滑PL过程n(Fn-F)用光滑经验过程加上一个可忽略的余项来一致地表示.把文献[8]的结果加以改进,使其表示形式在统计意义上更为直观.并得到光滑PL过程的重对数律. For the nonparametric smooth PL estimator F n , the smooth PL process n(F n-F) can be uniformly represented by a smooth experiential process plus a negligible remainder term when the data are subject to random left truncation. In this paper, we improved the result of Zhou Yang(1996) and made the representation more explicit in statistics. The law of iterated logarithm (LIL) was established from this representation.
作者 陈钰芬
出处 《杭州大学学报(自然科学版)》 CSCD 1998年第1期18-23,共6页 Journal of Hangzhou University Natural Science Edition
关键词 光滑PL估计 光滑PL过程 随机截断 分布函数 smooth PL estimator smooth PL process experiential process hazard function
  • 相关文献

参考文献5

同被引文献8

  • 1PAKES A G, STEUTEL F W. On the number of records near the maximum[J]. Austral J Statist, 1997,39(2) : 179-192. 被引量:1
  • 2PAKES A G, LI Y. Limit laws for the number of near-maxima via the Poission approximation[J]. StatistProbab Lett, 1998, 40:395-401. 被引量:1
  • 3HU Zhi-shui, SU Chun. Limit theorems for the number and sum of near-maxima for medium tails[J]. Statist Probab Lett, 2003, 63:229-237. 被引量:1
  • 4REMPALA G. Asympotics for products of sums and U-statistics[J]. Electron Comm Probab, 2002, 7:47-54. 被引量:1
  • 5QI Y. Limit distribution for products of sums[J].Statist Probab Lett, 2003, 62:93-100. 被引量:1
  • 6QI Y. A note on asymptotic distribution of product of sums[J]. Statist Probab Lett, 2004, 68:407-413. 被引量:1
  • 7LI Yun. A note on the number of records near the maximum[J]. Statist Probab Lett, 1999, 43:153-158. 被引量:1
  • 8PAKES A G, LI Y. The number and sum of nearmaxima for thin-tailed population[J]. Adv Appl Prob,2000, 32:1100-1116. 被引量:1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部