期刊文献+

结构矩阵在矩阵张量积多重线性映射中的应用 被引量:2

Application of Structure Matrix in Tensor Product Multilinear Mapping
下载PDF
导出
摘要 在解决张量积多重线性映射问题时,只用矩阵代数知识解决问题有些繁琐,而引入结构矩阵来解决张量积多重线性映射问题,不仅能使问题变得更加简单而且更加容易理解接受.给出了结构矩阵在解决张量积多重线性映射问题时的一些重要应用,经过与用矩阵代数知识解决此问题相比较对照,更显示出用结构矩阵解决问题的优越性. It is not easy to solve the problem of tensor product multilinear mapping if only matrix algebra knowledge is used. The introduction of structure matrix will make this problem much easier to be solved and more acceptable among people. Some important applications of structure matrix in the tensor product multilinear mapping are given. Compared with the method of matrix algebra knowledge, the proposed method enjoys obvious advantages.
出处 《淮海工学院学报(自然科学版)》 CAS 2008年第4期1-4,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金 国家自然科学基金资助项目(10771073)
关键词 结构矩阵 张量积 多重线性映射 structure matrix tensor semi-product multilinear mapping
  • 相关文献

参考文献8

  • 1程代展,齐洪胜.矩阵的半张量积[M].北京:科学出版社,2007. 被引量:12
  • 2王伯英著..多重线性代数基础[M].北京:北京师范大学出版社,1985:177.
  • 3CHENG Daizhan, DONG Yali. Semi-tensor product of matrices and its some applications to physics[J]. Methods and Applications of Analysis,2003,10(4):1-24. 被引量:1
  • 4戴华编著..矩阵论[M].北京:科学出版社,2001:289.
  • 5谢邦杰编著..抽象代数学[M].上海:上海科学技术出版社,1982:576.
  • 6GREUB W. Multilinear Algebra [M]. 2nd ed. New York: Springer-Verlag, 1978. 被引量:1
  • 7HUANG Yali. Linear Algebra in Systems and Control Theory[M]. Beijing: Science Press, 1984. 被引量:1
  • 8ISIDORI A. Non-linear Control Systems[M]. 3rd ed. New York.. Springer-Verlag, 1995. 被引量:1

共引文献11

同被引文献16

  • 1陈永林.矩阵之积的(T,S,2)-逆的反序律[J].南京师大学报(自然科学版),2004,27(3):12-16. 被引量:2
  • 2庄瓦金.体上矩阵的广义逆[J].数学杂志,1986,6(11):105-112. 被引量:16
  • 3曹重光.环上矩阵的广义逆[J].数学学报,1988,31(1):131-132. 被引量:8
  • 4MARSAGLIA G,STYAN G P H. Equalities and inequalities for rank of matrices[J]. Linear and Multilinear Algebra, 1974,2:269-292. 被引量:1
  • 5BEN-ISRAEL A, GREVILLE T N E. Generalized Inverses : Theory and Applications[M]. 2nd ed. New York: Springer-Verlag, 2003. 被引量:1
  • 6CHINE R E,GREVILLE T N E. A Drazin inverse for rectangular matrices[J]. Linear Algebra Application, 1980,43:53-62. 被引量:1
  • 7WANG Guorong,WgI Yimin,QIAO Sanzheng. Generalized Inverses: Theory and Computations[M]. Beijing/ New York: Science Press,2004. 被引量:1
  • 8GOLUB G H, LOAN C F V. Matrix Computations[M]. Baltimore: the Johns Hopkins University Press, 1983. 被引量:1
  • 9HARTWIG R E. Block generalized inverses[J]. Archive for Rational Mechanics and Analysis, 1976,61:197-251. 被引量:1
  • 10BEN-ISRAEL A, GREVILLE T N E. Generalized Inverses: Theory and Applications[M]. 2nd Edition. New York: Springer Verlag, 2003. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部