期刊文献+

基于二进制的长频繁项目集挖掘算法 被引量:1

Algorithm of long frequent item sets mining based on binary
下载PDF
导出
摘要 结合挖掘长频繁项目集的自顶向下搜索策略,提出一种基于二进制的长频繁项目集挖掘算法。该算法用数值递减搜索策略产生候选项,在用到频繁项目集修剪其子集减少候选项的基础上还通过事务特征减少搜索事务数,并运用二进制的逻辑"与"运算计算支持数,提高了算法的效率。算法分析和实验表明,该算法是有效的、快速的。 A long frequent item sets mining algorithm based on binary is presented, which combines top-down search that finds long frequent items sets. The algorithm uses descending-value search to create candidate-items, which are reduced by pruning subsets of fre- quent item sets, and further reduces searching the number of transaction by character of transactions, and then counts support with binary logic "and" operation, the efficiency of which is improved. Analysis and experiment of algorithm shows that it is efficient and fast.
作者 方刚
出处 《计算机工程与设计》 CSCD 北大核心 2008年第24期6246-6249,共4页 Computer Engineering and Design
基金 重庆三峡学院科研基金项目(2007-sxxynl-05)
关键词 数据挖掘 关联规则 长频繁项目集 二进制 递减搜索 data mining association rules long frequent item sets binary descending search
  • 相关文献

参考文献11

二级参考文献63

  • 1李天志,梁家荣,范平.基于二进制的集合运算研究[J].计算机工程与应用,2005,41(33):100-102. 被引量:2
  • 2李天志,梁家荣,范平,徐凤生.基于二进制的粗糙集基本运算研究[J].广西科学,2006,13(2):109-112. 被引量:1
  • 3Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In :Proc ACM SIGMOD Int Conf Management of Date.Washington D C,1993:207-216. 被引量:1
  • 4Han J Kamber.MData Mining:Concepts and Techniques[M].Beijing: High Education Press,2001. 被引量:1
  • 5Goethals B.Survey on frequent pattern mining[R].Helsinki Institute for information Technology ,Technical report, 2003. 被引量:1
  • 6Park J S,Chen M S,Yu P S.Efficient parallel data mining for association rules[C].In:Proceedings of the 4th International Conference on Information and Knowledge Management, Baltimore. Maryland, 1995:31-36. 被引量:1
  • 7Agrawal R,Shafer J C.Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996;8(6):962-969. 被引量:1
  • 8Cheung D W,Han J W,Ng V T et al.A fast distributed algorithm for mining association rules[C].In:Proceedings of IEEE 4th International Conference Parallel and Distributed Information Systems,Miami Beach, Florida, 1996 : 31 -44. 被引量:1
  • 9Cheung David W,Ng Vincent T,Fu Ada W.Efficient Mining of Association Rules in Distributed Databases[J].IEEE Transactions On Knowledge And Data Engineering, 1996 ; 8 (6) : 911 -922. 被引量:1
  • 10Cheung D W,Lee S D,Xiao Y Q.Effect of Data Skewness and Workload Balance in Parallel Data Mining[J].IEEE Transactions on Knowledge and Data Engineering.2002;14(3):498-514. 被引量:1

共引文献293

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部