期刊文献+

Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method

Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method
下载PDF
导出
摘要 The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第11期1047-1051,共5页 理论物理通讯(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.10672053 the Scientific Research Fund of the Education Department of Hunan Province under Grant No.07D064
关键词 extended sinh-Gordon equation expansion method exact solutions nonlinear evolution equations Konopelchenko-Dubrovsky equation sinh-Gordon方程 Konopelchenko-Dubrovsky方程 精确解 行波解 非线性进化方程
  • 相关文献

参考文献30

  • 1M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991). 被引量:1
  • 2G.L. Lamb, Rev. Mod. Phys. 43 (1971) 99. 被引量:1
  • 3C.H. Gu, H.S. Hu, and Z.X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Scientific and Technical Publishers, Shanghai (1999). 被引量:1
  • 4M.L.Wang, Y.B. Zhou, and Z.B. Li, Phys. Lett. A 216 (1996)67. 被引量:1
  • 5A.M. Wazwaz, Math. Comput. Model 40 (2004) 499. 被引量:1
  • 6E.J. Parkes and B.R. Duffy, Comput. Phys. Commun. 98 (1996) 288. 被引量:1
  • 7E.G. Fan, Phys. Lett. A 277 (2000) 212. 被引量:1
  • 8S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Acta Phys. Sin. 50 (2001) 2068. 被引量:1
  • 9Z.Y. Yan, Commun.Theor. Phys. (Beijing, China) 38 (2002) 143. 被引量:1
  • 10X.L. Yang and J.S. Tang, Chin. Phys. 16 (2007) 310. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部