期刊文献+

次模函数近似算法求最小颜色生成树(英文) 被引量:1

Submodular Potential Function for the Minimum Color Spanning Tree Problem of Edge-colored Graphs
下载PDF
导出
摘要 给定图G并对其进行边着色,G的最小颜色生成树(MCST)问题是指,找出G的一棵生成树,使得其边集所着颜色数最少.最小颜色生成数问题MCST已被证明是NP-、APX-完备的,从而此问题没有近似比为常数的近似算法.本文中,我们利用次模函数理论(贪婪算法的思想)给出最小颜色生成树问题的一个近似算法,且此算法的近似比为最好结果. Given a graph G and each edge of G a color, the minimum color spanning tree problem of the edge colored graph G is to find a spanning tree of G whose edge set consists of the smallest possible number of colors. The problem was shown to be NP-and APX-complete, thus it cannot be approximated within a constant factor. In this paper, we use submodular potential function, an important general theory about greedy approximations, to produce an approximation solution to the minimum color spanning tree problem,and the performance ratio cannot be improved any further.
出处 《新疆大学学报(自然科学版)》 CAS 2008年第4期391-394,共4页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by NSFC Supported by PCSIRT Supported by the "973" programm
关键词 边着色图 最小颜色生成树(MCST) 最大颜色匹配(MCM) 次模函数 近似算法 Edge-colored graph minimum color spanning tree maximum color matching submodular potential function approximation algorithm
  • 相关文献

参考文献13

  • 1Eppstein D. Finding the k smallest spanning trees[J]. BIT, 1992, 32: 237-248. 被引量:1
  • 2Shen X, Liang W. A parallel algorithm for multiple edge undates of minimum spanning trees[J]. Proc 7th Internat Parallel Processing Symp, 1993, 310-317. 被引量:1
  • 3Ho J H, Lee D T, Chang C H, Wong C K. Minimum diameter spanning trees and related problems[J]. SIAM J Comput,1991, 20: 987-997. 被引量:1
  • 4Camerini P M. The min-max spanning tree problem and some extensions[J]. Inform Process Lerr, 1978, 7(1): 10- 14. 被引量:1
  • 5Chen W T, Huang N F. The strongly connecting problem on muttihop packet radio networks [J]. IEEE Trans Comm,1989, 37(3): 293-295. 被引量:1
  • 6Simha R,Norahari B. Single path rounting with delay considerrations[J]. Computer Network ISDN Systems, 1992, 24:405-419. 被引量:1
  • 7Broersma H J,Li X. Spanning trees with many or few colors in edge-colored graphs[J]. Discussiones Mathematicae Graph Theory, 1997, 17(2): 259-269. 被引量:1
  • 8Chang R S, Leu S J. The minimum labeling spanning trees[J]. Inform Process Lett, 1997, 63: 277-282. 被引量:1
  • 9Krumke S O,Wirth H C. On the minimum label spanning tree problem[J]. Inform. Process Lett, 1998, 66(2): 81- 85. 被引量:1
  • 10Xiong Y P, Golden B, Wasil E. Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem[J]. Operations Research Letters, 2005, 33: 77-80. 被引量:1

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部