期刊文献+

燃烧区对管式固体氧化物燃料电池性能影响的数值研究 被引量:1

Numerical Simulation for Effect of Combustion Zone on Performance of Tubular Solid Oxide Fuel Cell
下载PDF
导出
摘要 建立了一个考虑燃烧区的管式固体氧化物燃料电池数学模型。电化学模型中考虑了造成电池输出损失的3种极化现象:欧姆极化、活化极化和浓差极化。在传热模型中,除考虑传导和对流换热外,也考虑了电池和空气进气管之间的辐射换热。分析了燃烧区长度对电池稳态和非稳态性能的影响。计算结果表明,增大燃烧区的长度可以导致电池管温度的增高,并且可以缩短非稳态过程的响应时间。输出端电压和输出功率随燃烧区增大而增大,但其变化幅度很小。 A model was developed to simulate the operation of a tubular solid oxide fuel cell with combustion zone at the steady and transient operation states. The model included all three polarizations: ohmic, activation and concentration polarization. Radiation between cell tube and air feed tube and heat transfer by convection and conduction was also included in this model. The effects of the length of the combustion zone on the performance of the steady and transient operation were analyzed in detail. Numerical results show that increasing the length of the combustion zone leads to an increasing of the overall cell tube temperature and a shorter response time for transient performance. However, enlarging the combustion zone would hardly change the terminal voltage and output power.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第35期120-126,共7页 Proceedings of the CSEE
关键词 管式固体氧化物燃料电池 电化学反应 传热传质 燃烧区 tubular solid oxide fuel cell electrochemicalreaction heat and mass transfer combustion zone
  • 相关文献

参考文献6

二级参考文献61

共引文献34

同被引文献19

  • 1贾俊曦,姜任秋,沈胜强,阿布里提.管式固体氧化物燃料电池非稳态数值研究[J].中国电机工程学报,2007,27(20):91-98. 被引量:4
  • 2Ceres power holdings plc annual report 2008[EB/OL]. Crawley: Ceres power holdings plc, 2008. http://www.cerespower.com. 被引量:1
  • 3Residential SOFCs making a big splash in Europe[J]. Fuel Cells Bulletin, 2007(8): 1. 被引量:1
  • 4Braun R J, Klein S A, Reindl D T. Review of state-of-the-art fuel cell technologies for distributed generation[R]. Madison: Energy Center of Wisconsin, 2000. 被引量:1
  • 5Achenbach E. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[J]. Journal of Power Sources, 1994, 49(1-3): 333-348. 被引量:1
  • 6Hall D J, Colclaser R G. Transient modeling and simulation of a tubular solid oxide fuel cell[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 749-753. 被引量:1
  • 7Aguiar P, Adjiman C S, Brandon N P. Anode-supported intemlediate- temperature direct internal reforming solid oxide fuel cell. Ⅱ: Model-based dynamic performance and control[J]. Journal of Power Sources, 2005, 147(1-2): 136-147. 被引量:1
  • 8Murshed A M, Huang B, Nandakumar K. Control relevant modeling of planer solid oxide fuel cell system[J]. Journal of Power Sources, 2007, 163(2): 830-845. 被引量:1
  • 9Zhang X, Li J, Li G, et al. Dynamic modeling of a hybrid system of the solid oxide fuel cell and recuperative gas turbine[J]. Journal of Power Sources, 2006, 163(1): 523-531. 被引量:1
  • 10Kandepu R, lmsland L, Foss B A, et al. Modeling and control of a SOFC-GT autonomous power system[J]. Energy, 2007, 32(4): 406-417. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部