期刊文献+

数据流上快速子序列匹配 被引量:1

Fast subsequence matching over data stream
下载PDF
导出
摘要 数据流技术目前已广泛应用于金融分析、网络监控及传感器网络等诸多领域,而已有的相似性匹配技术主要针对时间序列数据库,难于直接应用于高速、连续、实时、海量的流数据,因此在数据流上渐进、实时地进行子序列匹配成为一个极具价值和挑战性的问题。在动态时间规整技术的基础上,设计了一种新颖的界限机制,充分利用相似性阈值,尽量减少冗余计算,算法完全符合数据流"单遍扫描"的性能要求,并通过大量的模拟和真实数据实验表明:与现有的SPRING算法相比,在不损失任何算法精度的前提下,仅增加几个字节的空间开销,速度至少提高3倍。 Recently,techniques for data stream have been applied in widespread fields such as financial analysis,network moni- toring,and sensor network,etc.The existing techniques,solving the similarity matching,are mainly for time series databases.However, it is difficult to adapt to stream data directly due to the high speed,continuity,real time and large quantity.Therefore,subsequence matching over data stream becomes a meaningful and challenging problem in a progressive and real-time fashion.In this paper,a novel bound technique based on DTW has been designed to make the best of similarity threshold to prune the redundant computing,as well as is fit for data streams in a"single pass".Experiments with synthetic and real data show that the proposed method is at least 3 times faster than existing algorithm:SPRING,and only increasing several bytes without the loss of precision.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第36期174-178,183,共6页 Computer Engineering and Applications
基金 湖南省重点科技攻关项目(No.05GK2002) 湖南省重大科技攻关项目(No.06GK4034) 湖南省自然科学基金(No.03JJY6023)~~
关键词 时间序列 子序列匹配 动态时间归整 数据流 time series subsequence matching Dynamic Time Warping(DTW) data stream
  • 相关文献

参考文献11

二级参考文献14

  • 1封伶刚,王秀萍.一种新的基于LBG和DTW的模板训练算法[J].计算机工程与应用,2005,41(26):85-88. 被引量:3
  • 2[1]G Das,K Lin,H Mannila,G Renganathan & P Smyth.Rule discovery form time series[C].Proceedings of the 4rd International Conference of Knowledge Discovery and Data Mining,AAAI Press:16-22. 被引量:1
  • 3[2]E Keogh & M Pazzani.An enhanced representation of time series which allows fast and accurate classification,clustering and relevance feedback[C].Proceedings of the 4rd International Conference of Knowledge Discovery and Data Mining,AAAI Press,1998:239-241. 被引量:1
  • 4[3]D Berndt & J Clifford.Using dynamic time warping to find patterns in time series[C].AAAI-94 Workshop on Knowledge Discovery in Databases(KDD-94),Seattle,Washington,1994. 被引量:1
  • 5[4]D T Pham and A B Chan.Control Chart Pattern Recognition using a New Type of Self Organizing Neural Network[C].Proc.Instn,Mech,Engrs.1998,212(1):115-127. 被引量:1
  • 6F R John,S Myra.A survey of temporal knowledge discovery paradigms and methods[J].IEEE Trans on Knowledge and Data Engineering,2002,14(4):750-767 被引量:1
  • 7C Faloutsos,M Ranganathant,Y Manolopoulos.Fast subsequence matching in time series databases[C].In:Proc of the ACM SIGMOD Int'l Conf on Management of Data.Berlin:Springer-Verlag,1994.419-429 被引量:1
  • 8C Pemg,H Wang,S Zhang.Landmarks:A new model for similarity-based pattern querying in time series databases[C].In:Proc of the 16th Int'l Conf on Data Engineering.Los Alamitos:IEEE Computer Society Press,2000.33-44 被引量:1
  • 9S Kim,S Park,W Chu.An index-based approach for similarity search supporting time warping in large sequence databases[C].In:Proc of the 17th Int'l Conf on Data Engineering.Los Alamitos:IEEE Computer Society Press,2001.607-614 被引量:1
  • 10S F Wong,M H Wong.Efficient subsequence matching for sequences databases under time warping[C].In:Proc of the 7th Int'l Database Engineering and Applications Symposium.Berlin:Springer-Verlag,2003.139-148 被引量:1

共引文献39

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部