期刊文献+

A mixed finite element scheme for viscoelastic flows with XPP model 被引量:1

A mixed finite element scheme for viscoelastic flows with XPP model
下载PDF
导出
摘要 A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process. A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第6期671-680,共10页 力学学报(英文版)
基金 the National Natural Science Foundation of China (10672033,10590354,90715011 and 10272027) the National Key Basic Research and Development Program (2002CB412709)
关键词 Viscoelastic flow XPP model Low-order finite elements Iterative procedure Die swell Viscoelastic flow XPP model Low-order finite elements Iterative procedure Die swell
  • 相关文献

参考文献1

二级参考文献15

  • 1韩先洪,李锡夔.充填过程ALE自由面追踪及网格生成方法[J].大连理工大学学报,2005,45(5):633-639. 被引量:5
  • 2Chorin AJ.Numerical solution of the Navier-Stokes equations.Mathematics of Computation,1968,22:742~762 被引量:1
  • 3Armfield S,Street R.An analysis and comparison of the time accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids.Int J Numer Methods Fluid,2002,38:255~282 被引量:1
  • 4Hawken DM,Tamaddon-Jahromi HR,Townsend P,et al.A Taylor-Galerkin-based algorithm for viscous incompressible flow.Int J Numer Methods Fluid,1990,10:327~351 被引量:1
  • 5Zienkiewicz OC,Codina R.A general algorithm for compressible and incompressible flow-part I:The split,characteristic-based scheme.Int J Numer Methods Fluid,1995,20:869~885 被引量:1
  • 6Fortin M,Peyret R,Temam R.Numerical solution of Navier-Stokes equations for an incompressible fluid.J Mec,1971,10(3):357~390 被引量:1
  • 7Kim J,Moin P.Application of a fractional-step method to incompressible Navier-Stokes equations.J Comp Phy,1985,59:308~323 被引量:1
  • 8Guermond JL.On stability and convergence of projection methods based on pressure poisson equation.Int J Numer Methods Fluid,1998,26:1039~1053 被引量:1
  • 9Li Xikui,Han Xianhong,Pastor M.An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics.Comp Methods Appl Mech Engrg,2003,192:3845~3859 被引量:1
  • 10Peyret R,Taylor TD.Computational Methods for Fluid Flow,New York:Springer-Verlag,1983,167~169 被引量:1

共引文献1

同被引文献22

  • 1杨广军,申长雨,陈静波,刘春太,王利霞.聚合物挤出胀大的CAE分析[J].郑州工学院学报,1995,16(4):38-44. 被引量:3
  • 2张敏,孙胜,贾玉玺,赵国群.聚合物共挤出过程的挤出胀大有限元分析[J].高分子材料科学与工程,2006,22(5):36-40. 被引量:13
  • 3TANNER R I. A theory of die-swell[J]. J. Polym. Sci., Part A, 1970, 8:2 067-2 078. 被引量:1
  • 4CROCHET M J, KEUNINGS R. Die swell of a Maxwell fluid numerical prediction[J]. J. Non-Newtonian Fluid Mech, 1980, 7: 199-212. 被引量:1
  • 5CROCHET M J, KEUNINGS R. Finite element analysis of die swell of a highly elastic fluid[J]. J. Non-Newtonian Fluid Mech, 1982, 10: 339-356. 被引量:1
  • 6NGAMARAMVARANGGUL V, WEBSTER M F.Viscoelastic simulations of stick-slip and die-swell flows[J]. Int. J. Numer. Meth. Fluids, 2001, 36. 539-595. 被引量:1
  • 7LI X K, HAN X H. An iterative stabilized fractional step algorithm for numerical solution of incompressible N-S equations[J]. Int. J. Numer. Meth. Fluids, 2005, 49: 395-416. 被引量:1
  • 8HAN X H, LI X K. An iterative stabilized CNBS--CG scheme for incompressible non-isothermal non- Newtonian fluid flow[J]. Int. J. Heat Mass Tran., 2007, 50: 847-856. 被引量:1
  • 9BAAIJENS F P T. Mixed finite element methods for viscoelastic flow analysis: A review[J]. J. Non-Newtonian Fluid Mech, 1998, 79: 361-386. 被引量:1
  • 10GUERMOND J L, QUARTAPELLE L. On stability and convergence of projection methods based on pressure Poisson equation[J]. Int. J. Numer. Methods Fluids, 1998, 26(9): 1 039-1053. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部