期刊文献+

三维熔体前沿界面的Level Set追踪 被引量:7

Level Set method for 3D melt front surface
下载PDF
导出
摘要 给出三维Level Set方程,采用五阶加权本质无振荡格式进行空间离散,通过算例验证了该算法的正确性及追踪三维运动界面的准确性。进而将Level Set算法和同位网格有限体积法进行耦合,模拟了注塑成型充填阶段的三维流动过程,准确追踪到了不同时刻熔体前沿界面,预测并分析了流动过程中不同时刻的压力、速度等重要流动特征。数值结果表明,该方法可追踪三维熔体前沿界面,预测充填过程中的重要流动特征。 The 3D Level Set equations were introduced, which were discretized in space by the fifth order weighted essentially non-oscillatory scheme. Its accuracy was proven through capturing 3D moving interface. The governing equations were established for the viscous, incompressible, Newtonian fluids, which were discretized by the finite volume method based on non-staggered grid. The problem of the pressure-velocity decoupling was solved by the algorithm of momentum interpolation (MI) . The 3D flow process of injection molding was simulated by coupling the Level Set method and the finite volume method based on non-staggered grid, which can precisely capture the front surface of melt and predict the flow features, such as pressure and velocity at different times. The results indicated that the method can capture 3D front surface of melt and predict the flow features in injection process.
出处 《化工学报》 EI CAS CSCD 北大核心 2008年第12期3020-3026,共7页 CIESC Journal
基金 国家自然科学基金重大项目(10590353) 国家重点基础研究发展计划项目(2005CB321704)~~
关键词 三维Level SET 运动界面 同位网格 注塑成型 3D Level Set moving interface non-staggered grid injection molding
  • 相关文献

参考文献4

二级参考文献56

  • 1申长雨,王利霞,李倩,陈静波,刘春太.注塑成型充填过程的可压缩流动分析[J].化工学报,2006,57(7):1537-1542. 被引量:3
  • 2郑素佩,欧阳洁,赵智峰,张红平.熔体充模过程动态模拟及流场分析[J].中国塑料,2007,21(5):53-57. 被引量:2
  • 3[1]Hieber C A, Shen S F. A Finite-element/Finite-difference Simulation of the Injection Molding Filling Process.J. Non-Newt.Fluid Mech.,1980,7: 1-32 被引量:1
  • 4[2]Pichelin E, Coupez T. Finite Element Solution of the 3D Filling Problem for Viscous Incompressible Fluid.Computer Methods Applied Mechanic Engineer,1998, 163:359-371 被引量:1
  • 5[3]Hwang C J, Kwon T H. A Full 3D Finite Element Analysis of the Powder Injection Molding Filling Process Including Slip Phenomana. Polymer Engineering and Science,2002,42(1):33-50 被引量:1
  • 6[4]Coupez T, Marie S. From a Direct Solver to a Parallel Iterative Solver in 3D Forming Simulation. Int.J. Supercomp.,1997,11:205-211 被引量:1
  • 7[5]Wathen W, Silvester D. Fast Iterative Solution of Stabilized Stokes Systems*Part Ⅰ*Using Simple Diagonal Preconditioners. SIAM J. Numer.Anal., 1993,30:630-649 被引量:1
  • 8[6]Pichelin E, Coupez T. A Taylor Discontinuous Galerkin Method for the Thermal Solution in 3D Mold Filling. Computer Methods Applied Mechanic Engineer,1999,178:153-169 被引量:1
  • 9[7]Mohan R V, Ngo N D, Tamma K K. On a Pure Finite-element-based Methodology for Resin Transfer Mold Filling Simulations. Polymer Engineering and Science,1999,39(1): 26-43 被引量:1
  • 10[8]Amold D N, Brezzi F, Fortin M. Stable Finite Element for Stokes Equations.Calcolo.,1984,21:337-344 被引量:1

共引文献28

同被引文献56

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部