期刊文献+

开采沉陷遥感监测中多维纹理特征影像分类方法 被引量:2

Image classification based on multi-dimensions texture features during monitoring mining subsidence
下载PDF
导出
摘要 为提高采用遥感影像监测开采沉陷演化的准确性,探讨了基于多维纹理特征的影像分类方法。首先提取影像的多维纹理特征:局部方差、局部平均梯度、局部能量和局部信息熵,然后将其与地物光谱值一并作为人工免疫算法中样本的特征向量,利用免疫算法的选择、克隆、变异算子进行自学习得到全局最优聚类中心,从而提高影像分类精度。对淮南煤田进行开采沉陷遥感监测,结果表明,该方法分类总精度为88.26%,Kappa系数为0.853,优于传统的Parallelepiped和Maximum likelihood分类方法。 To improve the accuracy of monitoring mining subsidence by remote sensing image, the image classification based on multi-dimensions texture features was proposed. In this classification process, the multi- dimensions texture features including local square difference, local average grades, local energy and local information entropy were extracted, and then along with spectrum were used to compose eigenvector in the artificial immune algorithm. Through the selection operator, clone operator and mutation operator, the global optimum cluster center was obtained, so the accuracy of image classification was improved. This method was applied to monitor mining subsidence in Huainan based on TM image classification. The results show that this method is superior to the Parallelepiped and Maximum likelihood methods, and its overall accuracy and Kappa coefficient reaches to 88.26% and 0.853 respectively.
出处 《煤田地质与勘探》 CAS CSCD 北大核心 2008年第6期29-34,共6页 Coal Geology & Exploration
基金 安徽省2003年度地勘基金项目(2003-38)
关键词 遥感影像 开采沉陷 影像分类 多维纹理特征 remote sensing image mining subsidence image classification multi-dimensions texture features
  • 相关文献

参考文献10

  • 1HARALICK R M, SHANMUGAM K, DINSTEIN I. Textual features for Image classification[J]. IEEE Trans S M C, 2000, 30(4): 2207-2232. 被引量:1
  • 2JIMENEZ L O, MORELL A M, CREUS A. Classification of hyper-dimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks [J]. IEEE Trans. On G. R. S., 1999, 37(3) : 1360-1366. 被引量:1
  • 3朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2001. 被引量:1
  • 4LANDGREBE D A. On the relationship between class definition precision and classification accuracy in hyper-spectral analysis[C]//IGARSS', 2000: 147-149. 被引量:1
  • 5DEREK R P, STEVEN E E Image texture processing and data Integration for surface pattern discrimination[J]. Photo Gram metric Engineering and Remote Sensing, 1991, 57(4): 413-420. 被引量:1
  • 6DECASTRO L N, JON T. An artificial immune network for multimodal function optimization[C]//Evolutionary Computation , 2002: 12-17. 被引量:1
  • 7DECASTRO L N, FERNANDO J, VON Z. Learning and optimization using the clonally selection principle [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251. 被引量:1
  • 8武彦斌,彭苏萍.基于混沌免疫算法和遥感影像的土地利用分类[J].农业工程学报,2007,23(6):154-158. 被引量:4
  • 9彭苏萍,王磊,孟召平,段延娥,卞建玲,王英坡.遥感技术在煤矿区积水塌陷动态监测中的应用——以淮南矿区为例[J].煤炭学报,2002,27(4):374-378. 被引量:58
  • 10周成虎 骆剑承 刘庆生 等.遥感影像地学理解与分析[M].北京:科学出版社,2001.. 被引量:104

二级参考文献14

共引文献162

同被引文献30

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部