期刊文献+

短期电力负荷预测的自适应混合遗传优化BP算法 被引量:4

Short-Term Load Forecasting with Adaptive Hybrid Genetic Optimization BP Neural Network Algorithm
下载PDF
导出
摘要 基于遗传算法具有很强的全局搜索能力和BP神经网络具有精确的局部搜索能力的特点,提出对电力短期负荷预测的自适应的混合算法。将训练样本随机地分为训练集和测试集。应用该算法对澳大利亚悉尼的短期电力负荷进行了预测。仿真计算表明,该算法达到了提高预测精度和改善网络性能的要求。 The paper proposed an adaptive hybrid genetic BP neural network algorithm, which use genetic algorithm to optimize the BP network initial weight first, then use the BP neural network to learn by itself according to the data given, to acquire an excellent load forecasting system. In the training of neural network, the over-fitting often appears which affects the result of forecasting. To prevent this problem, the entire data set is divided into training set and validation set randomly. This algorithm was used to predict the load of Sydney. Simulation results indicate that the algorithm improve the forecast accuracy and the performance of the network.
出处 《电力科学与工程》 2008年第9期32-35,共4页 Electric Power Science and Engineering
关键词 短期电力负荷预测 BP神经网络 自适应混合遗传算法 过拟合 short-term load forecasting BP neural network adaptive hybrid genetic algorithm over fitting
  • 相关文献

参考文献7

二级参考文献35

共引文献84

同被引文献31

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部