期刊文献+

奇异二阶微分系统Neumann边值问题的多重正解 被引量:1

Multiplicity of Positive Solutions to Second Order Singular Neumann Boundary Value Problems of Differential Systems
原文传递
导出
摘要 本文研究了奇异二阶微分系统Neumann边值问题的多重正解,证明了在适当的条件下该问题至少存在两个解.其中第一个正解的存在性应用了非线性Leray-Schauder抉择定理,第二个解用到了Kras- noselskii锥不动点定理. This paper is devoted to establish the multiplicity of positive solutions to secondorder singular Neumann boundary value problems of differential systems. It is proved that such a problem has at least two positive solutions under our reasonable conditions. The existence of the first solution is obtained by using a nonlinear alternative of Leray-Schauder, and the second one is found by using a Krasnoselskii fixed point theorem ;n
出处 《应用数学学报》 CSCD 北大核心 2008年第6期1035-1045,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571021) 东北师范大学自然科学青年基金(20050102)资助项目
关键词 奇异 NEUMANN边值问题 正解 Leray-Schauder抉择 锥不动点定理 singular Neumann boundary value problem positive solution Leray-Schauder alternative fixed point theorem in cones
  • 相关文献

参考文献17

  • 1Cabada A, Pouse R R L. Existence Result for the Problem (φ(u'))' = f(t, u, u') with Periodic and Neumann Boundary Conditions. Nonlinear Anal., 1997, 30:1733-1742 被引量:1
  • 2Cabada A, Habets P. Optimal Existence Conditions for φ-Laplacian Equations with Upper and Lower Solutions in the Reversed Order. J. Differential Equations, 2000, 166:385-401 被引量:1
  • 3Dang H, Oppenheimer S F. Existence and Uniqueness Results for Some Nonlinear Boundary Value Problems. J. Math. Anal. Appl., 1996, 198:35-48 被引量:1
  • 4Erbe L H, Wang H. On the Existence of Positive Solutions of Ordinary Differential Equations. Proc. Amer. Math. Soc., 1994, 120:743-748 被引量:1
  • 5Ma R. Existence of Positive Radial Solutions for Elliptic Systems. J. Math. Anal. Appl., 1996, 201: 375-386 被引量:1
  • 6Rachunkva I, Stanke S. Topological Degree Method in Functional Boundary Value Problems at Resonance, Nonlinear Analysis. T.M.A., 1996, 27(3): 271-285 被引量:1
  • 7Li X, Jiang D. Optimal Existence Theory for Single and Multiple Positive Solutions to Second order Neumann Boundary Value Problems. Indian J. Pure Appl. Math., 2004, 35:573-586 被引量:1
  • 8Jiang D, Liu H. Existence of Positive Solutions to Second order Neumann Boundary Value Problem. Journal of Mathematical Research and Exposition, 2000, 20:360-364 被引量:1
  • 9Sun J, Li W. Multiple Positive Solutions to Second Order Neumann Boundary Value Problems. Applied Mathematics and Computation, 2003, 146:187-194 被引量:1
  • 10Deimling K. Nonlinear Functional Analysis. New York: Springer-Verlag, 1985 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部