摘要
设S是n项可图序列,σ(S)是S中的所有项之和,设G是一个简单图,σ(G,n)是使得任意n项可图序列S满足σ(S)≥m,则S有一个实现包含G的m的最小值,本文给出了σ(CK,n)的下界并证明了当n≥5时,σ(C5,n)=4n-4,当n≥7时,σ(C6,n)=4n-2。
Abstract In this paper we consider a variation of the classical extremal problems. Let S be an n-element graphical sequence, and σ(S)be the sum of the terms in S.Let G be a graph. The problem is to determine the smallest m such that any n-term graphical sequence S having σ(S)≥m has a realization containing G. Denote this value m by σ(G,n).We show σ (C2m+1,n)≥m (2n - m - 1) +2 for m ≥2, σ (C=m, n) ≥ (m - 1) (2n-m) +4 for m ≥2 ,σ(C6,n) :4n-4 for n≥5, σ(Ce,n)=4n-2 for n≥7.
出处
《漳州师院学报》
1997年第4期27-31,共5页
Journal of ZhangZhou Teachers College(Philosophy & Social Sciences)
基金
福建省自然科学基金