摘要
离散结构动力方程为差分方程,并假设始、末时刻位移已知,将初值问题形式上转化为边值问题,然后利用快速傅立叶变换(FFT)进行求解,从而得到非齐次结构动力方程的一个数值特解。将该数值特解与通过精细积分法求得的齐次方程通解相结合,建立了求解结构动力方程的一种新方法。该方法具有较高的精度和计算效率,算例的数值结果证明了本文方法的有效性。
A precise time integration-FFT method applied for linear time-invariant dynamic system is presented. The initial-value problem is formally transformed into a boundary-value problem through discreting the structural dynamic equation and assuming the two ends of time displacement is known. A new method has high precision and efficiency to solve the structural dynamic equation is obtained by combining the numerical particular solution of non- homogeneous equation solved by fast Fourier transform (FFT) with the general solution of homogeneous equation obtained by precise integration method (PIM). Numerical examples show the validity of the present method.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第6期12-15,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(10672194)
广东省自然科学基金资助项目(031552)
关键词
结构动力方程
精细积分法
差分方程
快速傅立叶变换
structural dynamics
precise integration method (PIM)
difference equation
fast Fourier transform (FTT)