期刊文献+

图像检索中IRRL模型研究 被引量:2

Research of IRRL Model in Image Retrieval
下载PDF
导出
摘要 相关反馈实现了人机交互,是图像检索中的不可缺少的部分,一般图像检索中都使用一种反馈算法。IRRL模型将机器学习中的强化学习原理应用到图像检索的相关反馈中来。它将现有的查询点优化、特征加权、贝叶斯分类器等算法作为系统学习的动作,通过不同的状态选择不同的动作,最终为不同类的图像寻找到合适的反馈算法策略,最后根据策略进行具体的图像检索。文中对IRRL模型具体算法进行了研究,并在此基础上提出了一些改进意见。 Relevance feedback realized a good man-machine interaction in image retrieval, therefore it became an indispensable part of image retrieval. Generally, there is only one feedback algorithm in an image retrieval system. IRRL model integrtate query vector modification, feature relevance estimation and Bayesian inference as actions for learning of the system, through various state choosing different action, at last looking for different feedback algorithm strategies for different classes of images, then tree the strategies to detailed retrieval. In this paper, based the research of IRRL model, advanced some advices.
出处 《计算机技术与发展》 2008年第12期35-37,40,共4页 Computer Technology and Development
基金 国家自然科学基金(60673092) 教育部科研重点项目(205059) 江苏省高技术研究计划项目(BG2005019)
关键词 强化学习 Q-学习 相关反馈 图像检索 IRRL模型 reinforcement learning Q_learning relevance feedback image retrieval IRRL model
  • 相关文献

参考文献9

  • 1黄德才,胡嘉,郑月锋.交互式图像检索中相关反馈进展研究[J].计算机应用研究,2005,22(9):15-18. 被引量:9
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3Yong Rui, Huang T S. Content - Based Image Retrieval with Relevance Feedback in MARs[J]. ICIP, 1997,2:815 -818. 被引量:1
  • 4Yong Rui, Huang T S, Mehrotra S, et al. A Relevance Feedback Architecture for Content - based Multimedia Information Retrieval Syetems[ C]//In: Proceeding of IEEE Workshop on Content Based Access of Image and Video Libraries. Porto Rico:[s.n. ], 1997:82-90. 被引量:1
  • 5龚声蓉,熊璋,韩军,孙文彦.基于内容的自适应图象检索系统的设计[J].计算机工程,2001,27(10):45-47. 被引量:8
  • 6Su Z, Zhang H, Ma S. Using Bayesian classifier in relevant feedback of image retrieval[ C]//In: Titsworth M: Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence (IEEE ICTAI 2000). Vaneouver: IEEE CS Press, 2000: 258 - 261. 被引量:1
  • 7Mitchell T M.机器学习[M].曾华军,张银奎,译.北京:机械工业出版社,2005:165-170. 被引量:4
  • 8王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006. 被引量:34
  • 9Yin P Y, Bhanu B, Chang K C, et al. Integrating Relevance Feedback Techniques for image retrieval Using Reinforcement Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (10) : 1536 - 1551. 被引量:1

二级参考文献110

  • 1Aksoy S.,Haralick R.M.,Cheikh F.A.,Gabbouj M.A weighted distance approach to relevance feedback.In:Proceedings of the IAPR International Conference on Pattern Recognition,Barcelona,Spain,2000,812~815 被引量:1
  • 2Zhou X.S.,Huang T.S.Small sample learning during multimedia retrieval using BiasMap.In:Proceedings of IEEE Conference Computer Vision and Pattern Recognition,Hawaii,2001,11~17 被引量:1
  • 3Zhou X.S.,Huang T.S.Image retrieval:Feature primitives,feature representation,and relevance feedback.In:Proceedings of IEEE Workshop on Content-Based Access to Image and Video Libraries,South Carolina,2000,10~14 被引量:1
  • 4Jing F.,Li M.J.,Zhang H.J.,Zhang B.An effective region-based image retrieval framework.In:Proceedings of ACM Multimedia,Juan-les-Pins,France,2002,456~465 被引量:1
  • 5Rui Y.,Huang T.S.,Mehrotra S.,Ortega M.Automatic matching tool selection via relevance feedback in MARS.In:Proceedings of the 2nd International Conference on Visual Information Systems,San Diego,California,1997,109~116 被引量:1
  • 6Nastar C.,Mitschke M.,Meilhac C.Efficient query refinement for image retrieval.In:Proceedings of IEEE Conference Computer Vision and Pattern Recognition,CA,1998,547~552 被引量:1
  • 7Meilhac C.,Nastar C.Relevance feedback and category search in image databases.In:Proceedings of International Conference on Multimedia Computing and Systems,Florence,Italy,1999,512~517 被引量:1
  • 8Vasconcelos N.,Lippman A.Bayesian relevance feedback for content-based image retrieval.In:Proceedings of IEEE Workshop on Content-Based Access to Image and Video Libraries,South Carolina,2000,63 ~67 被引量:1
  • 9Wu H.,Lu H.,Ma S.D.The role of sample distribution in relevance feedback for content-based image retrieval.In:Proceedings of IEEE International Conference on Multimedia and Expo,Lausanne,Switzerland,2002,225~228 被引量:1
  • 10Laaksonen J.,Koskela M.,Oja E.PicSOM:Self-organizing maps for content-based image retrieval.In:Proceedings of INNS-IEEE International Joint Conference on Neural Networks,Washington,DC,1999,2470~2479 被引量:1

共引文献95

同被引文献15

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部