摘要
建立了时间多尺度与空间多尺度兼顾的离散元与有限元耦合的时空多尺度计算模型,并推导了基于元/网格动量传递的力学和动力学参变量的过渡算法,实现了离散元与有限元耦合过渡区内参变量信息的合理交换,从理论上解决了时空多尺度计算中离散元区域与有限元区域之间物理和力学特征的光滑过渡问题.通过弹性应力波在细长杆中传播的算例,验证了该时空多尺度数值计算方法具有较高的准确性和计算效率.
A multiscale numerical model of time and space by coupling DEM (discrete element method) and FEM (finite element method) was established. The multiscale numerical model accomplished multiscale time and multiscale space calculations at the same time. Based on the element/mesh momentum transfer, the transition algorithm of mechanical and dynamic parametric variables was deduced. The transition algorithm achieved reasonable information exchange in the coupling transition zone between DEM and FEM, which theoretically solved the smooth transition problem of the physical and the mechanical characteristics between DEM zone and FEM zone in the multiscale computation of time and space. Through an example of elastic stress-wave propagation through a slender rod, the high accuracy and computation efficiency of the multiscale numerical method of time and space were validated.
基金
国家自然科学基金(10472114,50805064)
2006年度中国科学院王宽诚博士后工作奖励基金资助
关键词
元/网格动量传递
离散元与有限元耦合
时空多尺度
数值计算
element/mesh momentum transfer
coupling discrete element method and finite element method
multiscale time and space
numerical computation