期刊文献+

卡尔达诺的构造性几何证明 被引量:6

Cardano′s constructive geometric demonstration
下载PDF
导出
摘要 基于对《大术》第7章关于三项方程变换法则的几何证明的构造性特点分析,总结了卡尔达诺的构造思想,并按照其方法把他针对三项三次方程的证明自然地推广到一般三项方程.由此认为,卡尔达诺在《大术》中的几何证明大多区别于经典的综合证明,而属于以分析为基础的验证.他对涉及高次方程的几何证明一般是通过具体例子来展示一般方法,但是,他针对特殊情形的证明方法具有一般性.另外,在方法论上指出,古证复原方法也适用于历史上存在的几何证明. Based on the analysis of the constructive characteristics of the geometric demonstrations on the transformation between two three-term equations in the seventh chapter of Cardano's Artis Magnae, his constructive idea is summarized, and his demonstration on the case of the cubic equation is generalized to the general case by his own method. It is concluded that the most of the demonstrations in Cardano's Artis Magnae are different from classical synthetic proofs and are based on analytic deduction. Although the general method of his demonstrations about the cases of high degree equations is usually shown by concrete examples, his demonstrations on special cases are universal. Besides, it is pointed out that the reasonable reconstructive method is adaptive to the domain of historic geometric proofs.
作者 赵继伟
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期14-18,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10771169)
关键词 卡尔达诺 几何证明 变换法则 古证复原 Cardano geometric demonstration transformation rule reasonable reconstruction
  • 相关文献

参考文献9

二级参考文献20

  • 1曲安京.中国数学史研究范式的转换[J].中国科技史杂志,2005,26(1):50-58. 被引量:59
  • 2赵继伟,杨宝山.卡尔达诺的“黄金法则”[J].西北大学学报(自然科学版),2005,35(3):370-372. 被引量:10
  • 3曲安京.中国古代的二次求根公式与反函数[J].西北大学学报(自然科学版),1997,27(1):1-3. 被引量:4
  • 4迈尔 涂长晟 译.生物学思想发展的历史·绪论[M].成都:四川教育出版社,1990.. 被引量:1
  • 5Qu Anjing. Perche la matematica nella Cina antica? [ A ]. Emmer Michele (ed). Matematica e Cultura 2003 [ C ]. Milan:Springer-Verlag, 2003. 205 - 217 . 被引量:1
  • 6Wu Wen-tsun. Mathematics Mechanization[ M]. Beijing: Science Press, Dorrecht: Kluwer Academic Publishers, 2000.1 -66. 被引量:1
  • 7Poincare H. L'Avenir des Mathematiques [ A ]. Proceedings of the International Congress of Mathematicians, Rome 1908[C]. Vol. Ⅰ . Castelnuovo G (ed). Rome: Tipografia della R. Accademia dei Lincei, 1909. 167. 被引量:1
  • 8Weil A. History of Mathematics: Why and How[ A]. Proceedings of the International Congress of Mathematicians, Helsinki 1978 [ C ]. Helsinki : Academia Scientiarum Fennica, 1980. 236. 被引量:1
  • 9Mayr E. The Growth of Biological Thought: Diversity, Evolution and Inheritance[ M]. Cambridge: Harvard University Press, 1982. 被引量:1
  • 10CARDANO G. Ars Magna[ M ]. Translated and edited by WITMER T R. New York: Dover Publications Inc,1968. 182-184. 被引量:1

共引文献68

同被引文献39

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部