摘要
利用Bernstein三角插值多项式,构造了一个组合型的线性算子Hn(f;x,r)(r为任意奇自然数),该算子不但能够一致地收敛到每个以2为周期的连续函数,而且,对于高阶光滑的被逼近函数,其收敛阶能够达到最佳。
In this paper, a new linear combination operator Hn(f; x, r) is constructed through Bemstein trigonometric polynomial. For any continuous periodic function f(x) with period 2π , Hn(f; x, r) converges to f(x) on [ -π, π ] unifomlly, and has the best approximation order if f(x) ∈C2π^j 0≤j≤r, where r is an odd natural number.
出处
《长春理工大学学报(自然科学版)》
2008年第4期150-152,155,共4页
Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词
三角插值多项式
一致收敛
最佳收敛阶
trigonometric interpolation polynomials
uniform convergence
best convergence order