期刊文献+

喷射器临界背压对喷射制冷系统性能的影响 被引量:2

Effect of ejector critical downstream pressure on the ejection refrigeration system
下载PDF
导出
摘要 为了确保喷射器在良好的工况条件下运行,文中针对太阳能喷射制冷系统的工况范围,以R134 a为工质建立了喷射器运行特性计算模型,计算分析了临界背压随喷射器运行工况的变化关系,以及对制冷系统性能的影响。结果表明:喷射器的临界背压随发生温度和蒸发温度的增大而增大,极限喷射系数随发生温度的升高而降低,随蒸发温度的升高而升高;喷射制冷系统COP随喷射器背压(冷凝压力)的升高先保持不变后减小,当Tg=353K,Te=281K和Te=283K时,喷射器分别在Tc=307K左右和Tc=308K左右时,达到临界状态,临界背压分别为0.85MPa、0.88MPa,COP分别为0.2和0.227。 In order to make an ejector work better, a model for predicting the ejector operation features was established based on the solar ejection refrigeration system used R134a as refrigerant, which cotdd be applied to analyze the relation between ejector critical down stream pressure and operational mode as well as its influence to the ejection refrigeration system. It was found that the critical down stream pressure increased with the evaporation and generation temperature, critical entrainment ratio of an ejector increased with the evaporation but decreased with generation temperature, the refrigeration system COP value at first kept almost constant until the critical value and then reduced with the down stream pressure. COP could reach as high as 0.227 and usl = 0.33 at Tg = 353 K, Te = 283K, and the critical back pressure for ejector was 0.88MPa, and the critical back pressure for ejector was 0.85MPa when Tg =353K, and Te =281K.
出处 《低温与超导》 CAS CSCD 北大核心 2008年第11期61-65,共5页 Cryogenics and Superconductivity
基金 河南省杰出青年基金项目(084100510008) 河南省科技攻关项目(082102280010)资助
关键词 喷射式制冷 喷射器 临界背压 极限喷射系数 Ejection refrigeration, Ejector, Critical down stream pressure, Critical entrainment ratio
  • 相关文献

参考文献9

  • 1Keenna J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment [ J]. ASME J. Appl. Mech. , 1950,17:299-309. 被引量:1
  • 2Harris L S, Fischer A S. Characteristics of the steam - jet vacuum pump [J]. J. Engng. Ind. 1954,86:358 - 364. 被引量:1
  • 3Stoeeker W F. Refrigeration and air - conditioning [M]. Mc Graw - Hill. New York, 1958. 被引量:1
  • 4索科洛夫ER,津格尔HM.喷射器[M].北京:科学出版社,1977. 被引量:12
  • 5张博.喷射器及太阳能喷射式制冷系统研究[D].大连:大连理工大学,2003. 被引量:1
  • 6李海军..喷射器性能、结构及特殊流动现象研究[D].大连理工大学,2004:
  • 7张于峰,赵薇,田琦,孙越霞.喷射器性能及太阳能喷射制冷系统工质的优化[J].太阳能学报,2007,28(2):130-136. 被引量:27
  • 8Munday J T, Bagster D F. A new theory applied to steam jet refrigeration [J]. Ind. Eng. Chem. Process Des. Dev., 1977,16(4):442-449. 被引量:1
  • 9Huang .B J, Chang J M. Empirical correlation for ejector design [J]. International Journal of Refrigeration, 1999,22:379 - 388. 被引量:1

二级参考文献7

  • 1Munday J T,Bagster D F.A new ejector theory applied to steam jet refrigeration[J].Ind Eng Chem,Process Des Dev,1977,16(4):442-449. 被引量:1
  • 2Chen F C,Hsu C T.Performance of ejector heat pumps[J].International Journal of Energy Research,1987,11 (2):289-300. 被引量:1
  • 3Sun D W,Eames I W.Performance characteristics of HCFC-123 ejector refrigeration cycle[J].International Journal of Energy Research,1996,20:871-885. 被引量:1
  • 4Huang B J,Chang J M,Wang C P.A 1-D analysis of ejector performance[J].International Journal of Refrigeration,1999,22(5):354-364. 被引量:1
  • 5Keenan H,Neumann E P.An investigation of ejector design by analysis and experiment[J].Transactions of the ASME,Journal of Applied Mechanics,1950,72(3):299-309. 被引量:1
  • 6Alexis G K,Rogdakis E D.A verification study of steamejector refrigeration model[J].Applied Thermal Engineering,2003,23(1):29-36. 被引量:1
  • 7林贵平,袁修干.喷射式制冷系统工质研究[J].太阳能学报,1998,19(2):178-182. 被引量:9

共引文献37

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部