期刊文献+

一种改进的关联规则挖掘算法及其应用

An improved association rule data mining algorithm and its application
下载PDF
导出
摘要 详细了分析传统关联规则Apriori算法的不足,提出了一种改进的关联规则快速挖掘算法。针对当前高校招生录取后大量考生流失问题,使用该算法对某地区考生信息进行数理分析和仿真实验,挖掘了隐含的有用信息,为高校招生录取提供决策性的作用。 The shortcomings of traditional association rule Apriori algorithm are analyzed in this paper and an improved association rule data mining algorithm is presented. In view of the current problem that a large number of college candidates do not matriculate in universities or colleges after they are admitted by the universities or colleges, some college enrollment data are mined based on the proposed algorithm. The results show that the proposed algorithm can mine useful information and play an important role in college enrollment affairs.
出处 《重庆教育学院学报》 2008年第6期74-76,共3页 Journal of Chongqing College of Education
关键词 数据挖掘 关联规则 招生录取 data mining association rules college enrollment
  • 相关文献

参考文献3

二级参考文献22

  • 1秦亮曦,李谦,史忠植.基于排序FP-树的频繁模式高效挖掘算法[J].计算机科学,2005,32(4):31-33. 被引量:13
  • 2芦洁,刘志镜.挖掘关联规则中对Apriori算法的一个改进[J].微电子学与计算机,2006,23(2):10-12. 被引量:22
  • 3周霆,张伟,张泽洪.基于关联规则的映射聚类算法[J].微电子学与计算机,2006,23(3):26-29. 被引量:9
  • 4李包罗.医院信息系统面临的7个问题[J].中国计算机报,2002,(1):123-126. 被引量:3
  • 5范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:120
  • 6http://www. cs. helsinki. fi/u/goethals/ 被引量:1
  • 7http://www. ics. uci. edu/~mlearn/MLRepository. html 被引量:1
  • 8Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database. In: P Buneman, S Jajodia eds. Proc. of 1993 ACM SIGMOD Conf. on Management of Data. Washington DC: ACM Press, 1993. 207~216 被引量:1
  • 9Agrawal R, Srikant R. Fast algorithms for mining association rules. In: J Bocca, M Jarke, C Zaniolo eds. Proc. of the 20th Int'l Conf. on Very Large DataBases (VLDB'94). Santiago: Morgan Kaufmann, 1994. 487~499 被引量:1
  • 10Zaki M, Parthasarathy S, Ogihara M, Li W. New algorithms for fast discovery of association rules. In: D Heckerman, et al eds.Proc of the Third Intl. Conf. on Knowledge Discovery and Data Mining (KDD'97). AAAI Press, 1997. 283 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部