期刊文献+

温度对硝酸盐体系液相燃烧合成产物LiMn_2O_4的影响

Effect of Calcination Temperatures on Spinel LiMn_2O_4 Prepared by Solution Combustion Synthesis in Nitrate System
下载PDF
导出
摘要 以硝酸锂和硝酸锰为原料,尿素为燃料,用液相燃烧合成方法制备尖晶石型LiMn2O4物质,考察了焙烧温度(300-800℃)和焙烧时间(0-48h)对产物的组成结构和晶粒大小的影响.实验结果表明,未焙烧产物中主晶相为LiMn2O4,但含有大量Mn2O3;在300-800℃焙烧时,温度越高,所得尖晶石型LiMn2O4的纯度越高、晶粒越大、晶粒发育越完整,焙烧温度≤600℃时焙烧时间对提高产物中LiMn2O4的纯度影响不大,产物颗粒为纳米级,但焙烧温度大于700℃时影响较大,产物颗粒增大,产物中Mn2O3的含量随焙烧时间增加减少的幅度较大,制备LiMn2O4燃烧产物的最佳焙烧温度为800℃,保温6h左右.但焙烧温度为800℃焙烧时间大于8h时,LiMn2O4会分解生成Mn3O4. Spinel LiMn2O4 powders were prepared by solution combustion synthesis using nitrate lithiumand manganese as raw materials, and urea as fuel. The effects of calcination temperatures (300-800℃) and calcination times (0-48h) on the phase composition and grain size of products were studied. The results indicated that the product that was not calcinated had the main phase of LiMn2O4, and a mount of impurity of Mn2O3. At the calcination temperature of 300-800 ℃, the purity of LiMn2O4 increased, the grain size en- larged, and the crystallization was better, with the increasing temperatures. The effect of calcination time on the products was inconspicuous below 600℃, and notable above 700℃. Scanning electron microscope (SEM) images showed that nanocrystalline LiMn2O4 was obtained when the calcination temperature was lower than 600℃ and the grain size increased at higher temperatures. Above 700℃, the content of Mn2O3 in products decreased with increasing calcination times. The optimum calcination temperature was 800℃ for 6h. At 800℃, if the calcination time was greater than 8h, LiMn2O4 would be decomposed to Mn3O4.
机构地区 红河学院理学院
出处 《红河学院学报》 2008年第5期1-5,共5页 Journal of Honghe University
基金 国家自然科学基金重大研究计划面上项目(90610011) 云南省自然科学基金(2006E0091M)
关键词 液相燃烧合成 尖晶石型 LIMN2O4 尿素 焙烧温度 solution combustion synthesis LiMn2 O4 urea calcinations temperature nitrate
  • 相关文献

参考文献5

二级参考文献19

  • 1Masquelier C, Tabuchi M, Ado K, et al. J. Solid State Chem.,1996,123:255-266. 被引量:1
  • 2Huang K L, Peng B, Chen Z H, et al. Salar Energy Material & Solar Cells, 2000,62:177-185. 被引量:1
  • 3Wu C, Wang Z X, Wu F, et al. Solid State lonics, 2001.144:277-285. 被引量:1
  • 4Liu W, Farrington G C, Chaput F, et al. J. Electrochem. Soc.,1996,143(3):879-884. 被引量:1
  • 5Sun Y K, Oh I H, Kim K Y. Ind. Eng. Chem. Res.. 1997.36:4839-4846. 被引量:1
  • 6Sun Y K, Lee K H, Moon S I, et al. Solid State lonics. 1998,112:237-243. 被引量:1
  • 7Hong Y S, Han C H, Kim K, et al. Solid State lonics, 2001,139:75-81. 被引量:1
  • 8Tsutomu Ohzuku,Sachio takeda,Masato Iwanaga.Journal of Power Sources[J],1999,(81~82):92 被引量:1
  • 9Molenda J,Swierczek K,Marzec J,Liu R S.Solid State Ionics[J],2003,(157):107 被引量:1
  • 10Ali Eftekhari.Journal of Power Sources[J],2003,(124):182 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部