期刊文献+

基于小波分析和连接信任域的DDoS防范模型

A DDOS PREVENTION MODEL BASED ON WAVELET ANALYSIS AND CONNECTION TRUST DOMAIN
下载PDF
导出
摘要 分析了DoS攻击机理,基于网络流量的自相似性提出了一种DDoS防范模型。首先采用小波方法计算流量的Hurst参数,判断是否遭受DoS攻击。当认为受到攻击后,结合连接信任域来进行响应。实验表明,该模型可以检测到强、弱DoS攻击;在受到DDoS攻击后,仍可以在一定程度上为正常用户提供服务。 The mechanism of TCP based DoS attack is analyzed, and then a DDoS prevention model based on traffic self-similarity is proposed. The model first calculates the Hurst parameter of traffic by wavelet method, and then it decides whether the system is suffering DoS attack or not. When attack is asserted, connection trust domain is employed to respond to the situation. The model is able to serve the trusted connection even when the system is under DDoS attack.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第11期14-15,19,共3页 Computer Applications and Software
基金 国家863计划信息安全增值服务平台(2005AA145110)。
关键词 Denial—of-service 自相似 小波分析 连接信任域 Denial-of-service Self-similar Wavelet analysis Connection trust domain
  • 相关文献

参考文献4

  • 1Mellia M, Stoica L, Zhang H. TCP Model for Short Lived Flows. IEEE Communications Letters ,2002,6 ( 2 ) : 85 - 87. 被引量:1
  • 2Aleksandar Kuzmanovic, Edward W Knightly. Low-Rate TCP-Targeted Denial of Service Attacks and Counter Strategies. IEEE/ACM Transactions on Networking, 2006,14 (4). 被引量:1
  • 3Kuo Dong, Shoubao Yang, Shaolin Wang. Analysis of Low-rate TCP DoS Attack Against FAST TCP. Proceedings of the 6th International Conference on Intelligent Systems Design and Applications IEEE ,2006. 被引量:1
  • 4李永利,刘贵忠,王海军,尚赵伟.自相似数据流的Hurst指数小波求解法分析[J].电子与信息学报,2003,25(1):100-105. 被引量:22

二级参考文献10

  • 1[1]W.E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, On the self-similar nature of Ethernet traffic (extended version), IEEE/ACM Trans. on Networking, 1994, 2(1), 1-15. 被引量:1
  • 2[2]J. Beran, R. Sherman, M. S.Taqqu, W. Willinger, Long range dependence in variable bit rate video traffic, IEEE Trans. on Communication, 1995, 43(2/3/4), 1566-1579. 被引量:1
  • 3[3]P. Abry, D. Veitch, Wavelet analysis of long-range dependent traffic, IEEE Trans. on Information Theory, 1998, 44(1), 2-15. 被引量:1
  • 4[4]Z. Sahinoglu, S. Tekinay, Multiresolution decomposition and burstiness analysis of traffic traces,Wireless Communications and Networking Conference, WCNC. New Orleans, LA, USA, IEEE,Vol.2, 1999, 560-563. 被引量:1
  • 5[5]P. Abry, P. Goncalves, P. Flandrin, Wavelet-based spectral analysis of 1/f process, IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, Vol.3,1993, 237-240. 被引量:1
  • 6[6]G. Wornell, Signal Processing with Fractal: A Wavelet Based Approach, Prentice Hall, Znc. NJ,1995, 30-57. 被引量:1
  • 7[7]B. Tsybakov, N. D. Georganas, On self-similar traffic in ATM queues: Definitions, overflow probability bound, and cell delay distribution, IEEE/ACM Trans. on Networking, 1997, 5(3),397-409. 被引量:1
  • 8[8]S. Giordano, S. Miduri, M. Pagano, F. Russo, S. Tartarelli, A wavelet-based approach to the estimation of the Hurst parameter for self-similar data, International Conference on Digital Signal Processing, DSP 97, Santorini, Greece, Vol.2, 1997, 479-482. 被引量:1
  • 9[9]Z. Fan, P. Mars, Self-similar traffic generation and parameter estimation using wavelet transform,IEEE Global Telecommunications Conference, Phoenix, AZ, USA, Vol.3, 1997, 1419-1423. 被引量:1
  • 10[10]Oliver Rose, Statistical properties of MPEG video traffic and their impact on traffic modeling in ATM systems. Proc. of the 20th Annual Conference on Local Computer Networks, Minneapolis,MN, 1995, 397-406. 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部