期刊文献+

HSMC-SVM的二次逼近快速训练算法 被引量:2

Training Algorithm of HSMC-SVM Based on Second Order Approximation
下载PDF
导出
摘要 HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-SVM,并使用了样本缩减策略。实验表明,这种方法可以有效提高HSMC-SVM的收敛速度,其收敛速度已经超过了基于libsvm的组合多类支持向量机,完全可以用于分类类别多、样本数量大的分类场合。 HSMC-SVM is a kind of high-speed multi-class SVM with direct mode, and it is appropriate for the situation having lots of categories. Because working set selection of SMO algorithm is based on experience, HSMC-SVM would converge slowly trained with SMO. For accelerating the convergence process of HSMC-SVM, a new approach of working set selection based on second order approximation is proposed. At the same time, shrinking strategy is used too. The numeric experiments show that these measures can speed up the convergence process of HSMC-SVM efficiently. The convergence process of HSMC-SVM is even shorter than these composed multi-class SVMs trained with libsvm. Hence, HSMV-SVM based on second order approximation is very appropriate for the situation that classification category is more and the number of training samples is large.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2746-2749,共4页 Journal of Electronics & Information Technology
关键词 超球体多类支持向量机 SMO训练算法 工作集选择:二次逼近 Hyper-Sphere Multi-Class SVM(HSMC-SVM) Sequential Minimization Optimization(SMO) training algorithm Working set selection Second Order Approximation(SOA)
  • 相关文献

参考文献10

  • 1朱美琳,刘向东,陈世福.用球结构的支持向量机解决多分类问题[J].南京大学学报(自然科学版),2003,39(2):153-158. 被引量:48
  • 2Xu Ta, He Dake, and Luo Yu. A new orientation for multi-class SVM. Proceeding of 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. Qingdao, China. 30 July to 1 August 2007: 899-904. 被引量:1
  • 3Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 1999: 185-208. 被引量:1
  • 4Keerthi S, Shevade S, Bhattcharyya C, and Murthy K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 2001, 13(3): 637-649. 被引量:1
  • 5Keerthi S and Gilbert E. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 2002, 46(1/3): 351-360. 被引量:1
  • 6薛毅..最优化原理与方法[M],2001.
  • 7Joachims T. Making large-scale support vector machine learning practical. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 1999: 169-184. 被引量:1
  • 8Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order information for training support vector machines. Machine Learning Research, 2005 (6): 1889-1918. 被引量:1
  • 9http://www.ics.uci.edu/-mlearn/MLRepository.html. 被引量:7
  • 10http://www.csie.ntu.edu.tw/- cjlin/libsvmtools/datasets. 被引量:1

二级参考文献12

  • 1Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag, 1995, 5-13. 被引量:1
  • 2Burges C J C, Scholkopf B. Improving the accuracy and speed of support vector learning machines.Advances in Neural Information Processing Systems 9. Cambridge: MIT Press, 1997: 375-381. 被引量:1
  • 3Blanz V, Scholkopf B, Bultho H, et al. Comparison of view-based object recognition algorithms usingrealistic 3D models. Artificial Neural Networks - ICANN'96. Berlin: Springer Lecture Notes in Computer Science, 1996: 251-256. 被引量:1
  • 4Joachims T. Text categorization with support vector machines: Learning with many relevant features.Proceedings of the European Conference on Machine Learning. Berlin: Springer, 1998:137-142. 被引量:1
  • 5Drucker H, Wu D, Vapnik V. Support vector machines for span categorization. IEEE. Transactions on Neural Networks, 1999, 10(5): 1 048-1 054. 被引量:1
  • 6Muller K R, Smola A J , Ratsch G, et al. Predicting time series with support vector machines. Artificial Neural Networks - ICANN'97. Berlin: Springer Lecture Notes in Computer Science, 1997:999-1 004. 被引量:1
  • 7Brown M P S, Grundy W N, Lin D, et al. Knowledge-based analysis of microarray gene expression data using support vector machines. Proceedings of the National Academy of Sciences, 2000, 97( 1): 262-267. 被引量:1
  • 8Kreβel U. Pairwise classification and support vector machines. Advances in Kernel Methods. Cambridge:MIT Press, 1999, 255-268. 被引量:1
  • 9Guo G, Li S, Chan K. Face recognition by support vector machines. Proceedings of the International Conferences on Automatic Face and Gesture Recognition. 2000: 196-201. 被引量:1
  • 10Mattera D, Haykin S. Support vector machines for dynamic reconstruction of a chaotic system, Advances in Kernel Methods - Support Vector Learning. Cambridge: MIT Press, 1999: 211-242. 被引量:1

共引文献53

同被引文献18

  • 1何慧,张宏莉,张伟哲,方滨兴,胡铭曾,陈雷.一种基于相似度的DDoS攻击检测方法[J].通信学报,2004,25(7):176-184. 被引量:36
  • 2孙钦东,张德运,高鹏.基于时间序列分析的分布式拒绝服务攻击检测[J].计算机学报,2005,28(5):767-773. 被引量:55
  • 3Douligeris C, Mitrokotsa A. DDoS Attacks and Defense Mechanisms:A Classification//Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology. 2003 : 190-193 被引量:1
  • 4Xu Tu, He Da-ke, Zheng Yu. Detecting DDoS Attack Based on One-way Connection Density//Proceedings of Tenth IEEE International Conference on Communication Systems. 2006 被引量:1
  • 5Cheng C-M,Kung H,Tan K S. Use of spectral analysis in defense against Dos attack//Proceedings of IEEE GLOBECOM. Division of Engineering and Applied Science Harvard University 被引量:1
  • 6Feinstein L, Schnachenberg D, Balupari R, et al. Statistical Approaches to DDoS Attack Detection and Response//Proceedings of the DARPA Information Survivablility Conference and Exposition. 2003 被引量:1
  • 7Jin Shuyuan, Yeung D S. A Covariance Analysis Model for DDoS Attack Detection. IEEE Communications Society, 2004: 1882- 1886 被引量:1
  • 8Seo J, Lee C, Shon T. A New DDoS Detection Model Using Multiple SVM and TRA ff EUC Workshops 2005. LNCS 3832. 2005 : 976-985 被引量:1
  • 9Xu Tu, He Dake, Luo Yu.A New Orientation for Multi-Class SVM//Proceedings of the SNPD. 2007:899-904 被引量:1
  • 10Jin Cheng, Wang Haining, Shin K G. Hop-count Filtering: An Effective Defense Against Spoofed DDoS Traffie ff Proceedings of the 10th ACM Conference on Computer and Communications Security. 2003 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部