摘要
This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation. The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients. It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence. Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.
This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation. The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients. It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence. Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.
基金
NNSF of China Grant No.10671211
Hu'nan Provincial NSF Grant No.07JJ3005
the Scientific and Technical Research Council (TUBITAK) of Turkey