期刊文献+

H原子在完美δ-Pu金属体相中的扩散行为 被引量:6

Hydrogen Diffusion Behavior in Perfect δ-Pu Metal
下载PDF
导出
摘要 采用密度泛函理论的广义梯度近似方法计算了H原子在δ-Pu金属体相中可能稳定存在间隙位置的嵌入能.计算结果表明,八面体间隙是H原子最稳定存在位置,无自旋极化和自旋极化水平的嵌入能分别为-3.12和-2.22eV.四面体间隙位的嵌入能相对稍大,是次稳定存在位置.通过能量分析推测了单个H原子在完美δ-Pu金属中可能的扩散路径和扩散能垒.最可能扩散路径为相邻不同间隙位的交替扩散,八面体间隙到四面体间隙的扩散能垒为1.06eV,而四面体间隙到八面体间隙的扩散能垒为0.38eV.另外沿平行晶轴方向四面体间隙到四面体间隙交替直线扩散的能垒为1.83eV,八面体间隙到八面体间隙交替扩散路径的能垒最高,为2.52eV. The diffusion behavior of hydrogen atom in perfect δ-Pu metal was studied with density functional theory (DFT) and periodical model. The stablest site for hydrogen is the octahedral interstitial site. A single hydrogen atom has the minimum embedding energy about -3.12 and -2.22 eV in the octahedral interstitial site of fcc δ-Pu at non-spin polarization and spin-polarization levels, respectively. The embedding energy in tetrahedral interstitial site is little larger than that in tetrahedral interstitial site. Hydrogen atom in δ-Pu crystal most preferably diffuses along the path linked with different interstitials. The diffusion barrier along the path from octahedral interstitial site to tetrahedral interstitial site is 1.06 eV. The diffusion barrier along the reverse path is 0.38 eV. In addition, the diffusion barrier along the path from tetrahedral interstitial site to tetrahedral interstitial site is 1.83 eV, and the path from octahedral interstitial site to octahedral interstitial site corresponds to the highest diffusion barrier.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第11期1964-1968,共5页 Acta Physico-Chimica Sinica
关键词 H原子 δ-Pu金属 扩散行为 密度泛函理论 周期模型 H atom δ-Pu metal Diffusion behavior DFT Periodical model
  • 相关文献

参考文献21

二级参考文献16

  • 1李赣,赖新春,孙颖.FLAPW方法研究δ-钚单层表面几何和电子结构[J].物理化学学报,2005,21(6):686-689. 被引量:8
  • 2魏洪源.H原子在δ-Pu钚表面吸附行为研究[J].国防科技报告,GF-A0094052A,2006 被引量:1
  • 3Van Ek J, Sterne P A, Gonis A. Phase stability of plutonium [J]. Phys. Rev. B, 1993, 48:16280 被引量:1
  • 4Boring A M, Smith J L. Plutonium condensed-matter physics: a survey of theory and experiment, in. challenges in plutonium science [J]. Los Alamos Science, 2000, 1(26) :90 被引量:1
  • 5Eriksson O, Cox L E. Possibility of a &like surface for α-Pu. throey [J]. Phys. Rev. B, 1992, 46:13576 被引量:1
  • 6Ray A K, Boettger J C. An all-electron LCGTO study of square and hexagonal plutonium monolayers [J]. Eur. Phys. J. B, 2002, 27:429 被引量:1
  • 7Huda M N, Ray A K. Electronic structure and bonding of oxygen on plutonium layers [J]. Eur. Phys. J. B, 2004, 40: 337 被引量:1
  • 8Huda M N, Ray A K. A density functional study of atomic hydrogen adsorption on plutonium layers [J]. Physica B, 2004, 352:5 被引量:1
  • 9Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. J. Chem. Phys., 1990, 92:508 被引量:1
  • 10Delley B. A scattering theoretic approach to scalar relativistic corrections on bonding [J]. Int. J. Quant. Chem., 1998, 69. 423 被引量:1

共引文献6

同被引文献350

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部