期刊文献+

Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis) 被引量:10

Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis)
下载PDF
导出
摘要 Soil samples were collected from both bare and vegetated mine railings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH : 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable potassium in vegetated mine tailings were significantly higher than those in the bare mine railings (P 〈 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P 〈 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation. Soil samples were collected from both bare and vegetated mine tailings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH = 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable potassium in vegetated mine tailings were significantly higher than those in the bare mine tailings (P < 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P < 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation.
出处 《Pedosphere》 SCIE CAS CSCD 2008年第6期731-740,共10页 土壤圈(英文版)
基金 the National Natural Science Foundation of China (Nos.39830310 and 30070134) the NationalKey Basic Research Support Foundation (NKBRSF) of China (No.2002CB111504).
关键词 16S rRNA gene bacterial diversity bacterial community functional group mine tailings 细菌多样性 细菌群落 尾矿 开采技术
  • 相关文献

参考文献1

二级参考文献1

共引文献72

同被引文献171

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部