期刊文献+

基于Fisher线性判别模型的文本特征选择算法 被引量:4

A Fisher Linear Discriminant Model-Based Text Feature Selection Algorithm
下载PDF
导出
摘要 在采用向量空间模型表示方法的文本分类系统中,维数约简是必要的步骤,特征选择方法由于计算复杂度较低而被广泛采用。本文基于Fisher线性判别模型提出了一种新的文本特征选择算法,将其求解过程转换为一个特征项优化组合的问题,避免了复杂的矩阵变换运算。实验表明,该方法与信息增益、卡方统计方法比较,具有较明显的优势。 Dimension reducing is very important in VSM based text classification system. Feature selection is more suitable for text data because of its efficiency. A new feature selection algorithm is proposed in this paper on the basis of Fisher linear discriminant model, which converts the solution process to feature optimization problem and avoids the complex matrix operations. The experiment shows that the new algorithm has good performance and is better than IG and CHI method.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2008年第5期135-138,共4页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(70371008)
关键词 Fisher线性判别模型 文本分类 特征选择 fisher linear discriminant model text classification feature selection
  • 相关文献

参考文献6

二级参考文献27

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:96
  • 3袁亚湘 孙文渝.最优化理论和方法[M].科学技术出版社,1997.. 被引量:17
  • 4Xing E P, Jordan M I, Karp R M. Feature Selection for High-Dimention Genomic Microarray Data. Proc of 18th International Conference on Machine Learning (ICML2001), Williamstown:Williams College, June 28-July 1, 2001. 被引量:1
  • 5Kohai R, John G H. Wrappers for Feature Subset Selection. Artificial Intelligence Journal, Special Issue on Relevance, 1997:12(1-2): 273-324. 被引量:1
  • 6Bradley P, Mangasarian O, Street W. Feature Selection Via Mathematical Programming. INFORMS Journal on Computing, 1998,10(2): 209-217. 被引量:1
  • 7Bradley P, Mangasarian O. Feature Selection Via Concave Minimization and Support Vector Machines. Proc of the 15th International Conference on Machine Learning, San Francisco: 1998, 82-90. 被引量:1
  • 8Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998,2(2): 121-167. 被引量:1
  • 9Vapnik, V P. Statistical Learning Theory. New York:John Wiley & Sons Inc, 1998. 被引量:1
  • 10Weston J, Muckerjee S, Chapelle O, et al. Feature Selection for SVMs. Proceedings of NIPS 2000, Denver: 2000. 被引量:1

共引文献388

同被引文献28

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部