期刊文献+

中立型随机泛函微分方程的Khasminskii型定理(英文) 被引量:3

Khasminskii-Type Theorems for Neutral Stochastic Functional Differential Equations
下载PDF
导出
摘要 本文对中立型随机泛函微分方程建立了Khasminskii型定理,这个定理显示在局部Lipschitz条件但是不要求线性增长的条件下,中立型随机泛函微分方程存在一个全局解.本文的这个解存在性条件可以包含更广的一类非线性中立型随机泛函微分方程.最后,本文给出一个例子来阐述我们的思想. This paper establishes the Khasminskii-Type theorems for neutral stochastic functional differential equations, which shows that neutral stochastic functional differential equations have nonexplosion solutions with the local Lipschitz condition but neither the linear growth condition. The conditons in this paper may cover a wide class of nonlinear neutral stochastic functional differential equations. Finally, this paper examine an example to illustrate our idea.
作者 吴付科
出处 《应用数学》 CSCD 北大核心 2008年第4期794-799,共6页 Mathematica Applicata
关键词 中立型随机泛函微分方程 全局解 局部LIPSCHITZ条件 非线性增长条件 Neutral stochastic functional differential equations Global solutions Local Lipschitz condition Nonlinear growth condition
  • 相关文献

参考文献14

  • 1ArnOld L. Stochastic Differential Equations: Theory and Applications[M]. New York:John Wiley and Sone. 111-115. 被引量:1
  • 2Bahar A, Mao X. Stochastic delay Lotaka-Volterra model[J]. Journal Mathematical Analysis and Applications, 2004,292 : 364 - 380. 被引量:1
  • 3Bahar A, Mao X. Stochastic delay population dynamcis[J]. International Journal of Pure and Applied Mathematics, 2004,11 : 377-400. 被引量:1
  • 4Blythe S,Mao X,Shah A. Razumikhin-type theorems on stability of stochastic neural networks with delays[J]. Stochastic Analysis and its Application, 2001,19 ( 1 ) : 85 - 101. 被引量:1
  • 5Fang S,Zhang T. A study of a class of stochastic differential equations wiht non-Lipschitzian coefficients [J]. Probability Theory and Related Fields,2005,132: 356-390. 被引量:1
  • 6Friedman A. Stochastic Differential Equations and Applications, Vol. 1 and 2[M]. New York: Academic Press. 被引量:1
  • 7Ikeda I,Watanabe S. Stochastic Differential Equations and Diffusion Processes[M]. North-Holland:Amsterdam, 1981. 被引量:1
  • 8Khasminskii R Z. Stochastic Stability of Differential Equations[M]. Alphen:Sijtjoff and Noordhoff(translation of the Russian edition. Moscow:Nauka), 1969. 被引量:1
  • 9Mao X. Exponential Stability of Stochastic Differential Equations[M]. Dekker, 1994. 被引量:1
  • 10Mao X. Stochatie Differential Equations and Aplications[M]. Horwood,1997. 被引量:1

同被引文献1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部