期刊文献+

基于聚类分析的变压器局部放电智能诊断的研究 被引量:9

Study of intelligent diagnosis of transformers partial discharge based on cluster analysis
下载PDF
导出
摘要 现场局部放电在线监测系统所检测的原始信号一般包含多种干扰信号和不同类型的局部放电信号,不同类型的局部放电信号叠加同样也会给局部放电的诊断造成困难。聚类分析是将相似的数据对象组成多个簇的过程,通过聚类能够从大量数据中提取有价值的知识和模式,同时还可以有效地处理噪声数据。根据大量的现场测量,提取工频周期上局部放电特高频(UHF)检波信号的特征参数,采用模糊聚类的方法,排除了脉冲干扰信号。采用灰评估以及关联分析的方法,提取不同类型局部放电所对应的相位统计谱图(PRPD)的特征参数,对比实验室建立的标准局部放电类型模式库和状态模式库,智能化诊断出现场局部放电信号所表征的放电类型和放电状态。 Raw on-line monitoring partial discharge (PD) data for transformers consist of different types of PD signals as well as several kinds of interference signals. The superimposed different types of PD signals make it difficult to diagnose PD activities. Clustering analysis is a process in which the similar data objects are divided into a number of clusters. Through clustering analysis valuable knowledge and models can be extracted from a large number of data, and noise data can be deal with effectively. In this paper, the characteristic parameters of the pre-processed data in single cycle are extracted. The noise data are then eliminated with fuzzy clustering method. The classified PD signals are statistically analyzed with PRPD; PD types and PD severity are made intelligent diagnosis based on the standard models of PD type and PD state in laboratory using gray assessment method and correlation analysis.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2008年第6期7-12,共6页 Journal of North China Electric Power University:Natural Science Edition
关键词 局部放电 UHF检波信号 抗干扰 模糊聚类 灰评估 智能诊断 partial discharge enveloped UHF PD signals interference elimination fuzzy clustering gray assessment intelligent diagnosis
  • 相关文献

参考文献11

  • 1严璋.电器绝缘在线检测技术[M].北京:中国电力出版社,1995. 被引量:5
  • 2Mc Dermid, W Grant, D H Glodjo, et al. Analysis of converter transformer failures and application of periodic on-line partial discharge measurements [ C ]. Proc. Conf. on Electrical Insulation, Cincinnati, OH, October 2001, 577- 582. 被引量:1
  • 3Okubo H, Hayakawa N, Matsushita A. The relationship between partial discharge current pulse waveforms and physical mechanisms [ J ]. IEEE Electr. Insul. Mag, 2002, 18, (3): 38-45. 被引量:1
  • 4Judd M D, Cleary G P, Bennoch C J. Applying UHF partial discharge detection to power transformers [J ]. IEEE Power Eng Rev 2002, 22, (8) : 57 - 59. 被引量:1
  • 5Cleary G P, Judd M D. UHF and current pulse measurements of partial discharge activity in mineral oil[J]. IEE Proc-Sci Meas Technol,2006,153(2) :47 - 54. 被引量:1
  • 6Judd M D, McArthur S D J, McDonald J R, et al. In telligent condition monitoring and asset management partial discharge monitoring for power transformers [J] lEE Power Engineering Journal, December 2002. 被引量:1
  • 7Strachan S M, McArthur S D J, Judd M D, et al. Incremental knowledge-based partial discharge diagnosis in oil-filled power transformers [J]. Intelligent Systems Application to Power Systems, 2005. 被引量:1
  • 8唐炬,孙才新,宋胜利,许中荣.局部放电信号中的白噪声和窄带干扰[J].高电压技术,2002,28(12):8-10. 被引量:47
  • 9崔雪梅,孙才新,李新,杜林,李剑.实小波与复小波变换对局部放电在线监测中提取信号特征的特点研究[J].电工技术学报,2004,19(7):90-94. 被引量:18
  • 10高新波著..模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004:214.

二级参考文献13

共引文献79

同被引文献90

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部