期刊文献+

一种参数摄动的混沌异结构同步方法 被引量:3

A new approach to synchronization between two different chaotic systems with parametric perturbation
原文传递
导出
摘要 研究了参数摄动情形下的混沌异结构同步问题,基于Lyapunov稳定性定理并结合范数理论给出了系统参数摄动下实现混沌异结构同步的一个充分条件,为同步控制器的设计提供了一般方法.只要两混沌系统维数相等,状态变量可测,就可利用所提方法实现系统参数摄动下的异结构同步,并能够保证在同步实现后同步控制量伴随误差变量一同收敛至零.该方法鲁棒性强,适用范围广,通过对混沌系统、超混沌系统的同步仿真,证实了该方法的有效性. The problem of chaotic synchronization between two different chaotic systems with parametric perturbation is studied.Based on Lyapunov stability law and norm theory,a sufficient condition to synchronize two different chaotic systems with parametric perturbation is given and a general way of choosing the controller is proposed.This method can realize the synchronization of two chaotic systems with parametric perturbation if the dimensions of the chaotic systems are equal and the state variables are measurable.And it is required that the control must decay to zero together with the errors as soon as the synchronization is reached.The proposed method is robust and can be used widely.Numerical simulations of synchronization between two chaotic systems,and synchronization between two hyperchaotic systems are provided to show the effectiveness and feasibility of the method.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第11期6824-6829,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60674073) 国家科技支撑计划资助项目(批准号:2006BAB14B05) 国家重点基础研究发展计划(973)项目(批准号:2006CB403405)资助的课题~~
关键词 混沌 超混沌 同步 LYAPUNOV函数 chaos,hyperchaos,synchronization,Lyapunov function
  • 相关文献

参考文献7

二级参考文献60

共引文献157

同被引文献42

  • 1Pecora L M, Carroll T L. Synchronization of Chaotic Systems[J]. Physical Review Letters, 1990, 64(8) : 821 - 830. 被引量:1
  • 2Carroll T L, Pecora L M. Synchronizing Chaotic Circuits[J]. IEEE Transactions on Circuits and Systems, 1991, 38(4) : 453 -456. 被引量:1
  • 3Li Damei, Lu Junan, Wu Xiaoqun. Linearly Coupled Synchronization of the Unified Chaotic Systems and the Lorenz Systems[J].Chaos, Solitons & Fraetals, 2005, 23(1) : 79 - 85. 被引量:1
  • 4Feki M. Sliding Mode Control and Synchronization of Chaotic Systems with Parametric Uncertainties[J]. Chaos, Solitons Fractals, 2009, 41(3) : 1390 - 1400. 被引量:1
  • 5Yang Lixin, Chu Yandong, Li Xianfeng, et al. Chaos Synchronization in Autonomous Chaotic System via Hybrid Feedback Control[J]. Chaos, Solitons& Fraetals, 2009, 41(1): 214-223. 被引量:1
  • 6Pecora L M, Carroll T L. Synchronization of chaotic systems [J]. Physical Review Letters, 1990, 64 (8):821-830. 被引量:1
  • 7Carroll T L, Pecora L M. Synchronizing chaotic circuits [J]. IEEE Transactions on Circuits and Systems, 1991,38 (4)-453-456. 被引量:1
  • 8Li Damei, Lu Junan, Wu Xiaoqun. Linearly Coupled Synchronization of the unified Chaotic Systems and the Lorenz Systems [J]. Chaos, Solitons & Fractals, 2005,23 (1) : 79-85. 被引量:1
  • 9Moez F. Sliding mode Control and Synchronization of Chaotic Systems with Parametric Uncertainties[J]. Chaos, Solitons & Fractals, 2009,41 : 1390-1400. 被引量:1
  • 10Chen C H, Sheu L J, Chen H K, et al. A new hyper-chaotic system and itd synchronization [J]. Nonlinear Analysis: Real World Application, 2009, 10: 2088-2096. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部