期刊文献+

现代网络流量的混沌奇异吸引子 被引量:6

Chaotic strange attractors of Internet traffic
下载PDF
导出
摘要 网络流量的预测和控制是现代网络中的一个重要方面,但是它所呈现出来的长相关、分形等特征已经无法用传统的流量模型来描述。利用相空间重构方法,通过计算两组典型网络流量的Lyapunov指数、关联维来找出具有共性的现代网络流量的特征量,从而刻画网络流量的混沌奇异吸引子。仿真结果表明,现代通信网流量存在有共性的奇异吸引子。从而为网络的混沌建模及分析给出了理论上的支持。 The forecasts and the control of network traffic is an important aspect in modern network while its long-range dependence and-fractal characteristics can not be described with traditional model. Common characters of modern traffic were researched by calculating Lyapunov exponents and the correlation dimension of representative groups network traffic to depict network traffic chaos strange attractor. Result shows that there are common strange attractors in modern communication network, which is theoretically supportive to network modeling and analysis.
出处 《解放军理工大学学报(自然科学版)》 EI 2008年第5期427-430,共4页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 河南省杰出青年基金资助项目(512000400)
关键词 混沌奇异吸引子 相空间重构 网络流量 chaotic strange attractor phase space reconfiguration network traffic
  • 相关文献

参考文献14

  • 1LELAND W. On the self-similar nature of Ethernet traffic. (extended version)[J]. IEEE/ACM Transactions on Communications on Networking, 1994,2 (1) : 1-15. 被引量:1
  • 2TANENBAUM A S. Computer networks[M]. 3 rd Edition. New Jersey: Prentice Hall International, 2000. 被引量:1
  • 3CASE J, FEDOR M, SCHOFFSTALL M, et al. The simple network management protocol (SNMP)[EB/ OL]. http ://www. ietf. org/rfc/rfc1157. txt, 1990. 被引量:1
  • 4刘东林,帅典勋.网络流量模型的非线性特征量的提取及分析[J].电子学报,2003,31(12):1866-1869. 被引量:5
  • 5吴亚东,孙世新.低分辨率小规模网络流量数据的混沌特性鉴别[J].计算机应用研究,2005,22(9):247-249. 被引量:1
  • 6ESTER M, KRIEGEL H P, SANDER J. A density- based algorithm for discovering clusters in large spatial databases with noise[C]. Portland: Proc of the Second International Conference on Knowledge Discovery and Data Mining AAAI Press, 1996. 被引量:1
  • 7吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2003. 被引量:5
  • 8TAKENS F. Determing strange attractors in turbulence[J]. Lecture Notes in Math, 1981(898): 366- 381. 被引量:1
  • 9MICHAEL T R, JAMES J C, CARLO J, DE L. A practical method for calculating largest Lyapunov exponents in dynamical systems[J].Physic D, 1993, 65 (1) : 117-134. 被引量:1
  • 10GRASSBERGER P, PROCACCIA I. Dimension and entropy of strange attractors from a fluctuating dyamics approach[J]. Physica, 1984(13D):34-35. 被引量:1

二级参考文献10

共引文献8

同被引文献45

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部