期刊文献+

一种应用于水声目标检测的盲源分离算法 被引量:4

Blind Separation Algorithm for Underwater Target Detection
下载PDF
导出
摘要 提出了一种新的盲源分离方法。该方法基于独立分量(ICA)理论,可以有效去除噪声,提高目标检测的性能。针对在盲源分离中噪声消除比较困难这一问题,利用水声信号半盲的特点,引入了虚拟信号的概念。通过添加虚拟信号,成功地分离了混合信号。高斯噪声和K分布噪声的仿真表明,该算法在强背景噪声下较匹配滤波算法有明显的检测优势。 An algorithm for blind separation of sources is proposed. The algorithm based on the independent component analysis (ICA) theory can reduce the noise and improve the detection performance. Aimed at the problem difficult to eliminate the noise, the virtual signal is proposed and applied to the ICA algorithm for underwater target detection by using half-blind acoustic characteristics. The mixed signals can be separated by adding the virtual signal. Simulation results indicate that the algorithm performs better than the match filter method in strong background noise, such as the Gauss distribution and the K distribution noises.
出处 《数据采集与处理》 CSCD 北大核心 2008年第B09期6-11,共6页 Journal of Data Acquisition and Processing
关键词 目标检测 盲源分离 独立分量分析 水下目标检测 target detection blind signal separation independent component analysis under- water target detection
  • 相关文献

参考文献6

二级参考文献46

共引文献9

同被引文献40

  • 1尚赵伟,张明新,沈钧毅.基于二进小波直方图的纹理图像检索[J].微电子学与计算机,2006,23(1):130-133. 被引量:2
  • 2赵金奎.共模干扰和差模干扰及其抑制技术[J].电子质量,2006(5):72-76. 被引量:38
  • 3冯毅,王香华.小波变换降噪处理及其Matlab实现[J].数据采集与处理,2006,21(B12):37-39. 被引量:21
  • 4赵知劲,解婷婷,李小平,赵治栋.一种小波域盲源分离算法[J].西安电子科技大学学报,2007,34(3):423-427. 被引量:3
  • 5Cichocki A. Blind source separation algorithms with matrix constraints [ J ]. IEICE Transactions onInformation and Systems, 2003(3) : 522. 被引量:1
  • 6SHI Zhenwei, TANG Huanwen, TANG Yiyuan. Blind source separation of more sources than mixtures using sparse mixture models[J]. Pattern Recognition Letters, 2005,26 : 2491. 被引量:1
  • 7Li Yuanqing, Andrzej Cichocki, Shun-ichi Arnari. Sparse component analysis {or blind source separation with less sensors than sources[C]. 4th International Symposium on Independent Component Analysis and Blind Signal Separation(ICA2003): Nara, 2003: 89-94. 被引量:1
  • 8Bronstein A M, Bronstein M M, Zibulevsky M, et al. Blind separation of reflections using sparse ICA[C]. 4-th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003): Nara, 2003 : 227-232. 被引量:1
  • 9Georgiev P G, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J]. IEEE Trans on Neural Networks, 2005, 16(4) : 992. 被引量:1
  • 10Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representation [ J ]. Signal Processing, 2001,81(11):2353. 被引量:1

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部