期刊文献+

一种面向入侵检测的数据挖掘算法研究 被引量:3

Study on an Intrusion Detection Oriented Data Mining Algorithm
下载PDF
导出
摘要 为提高入侵检测的精确性和有效性,通过对基本序列模式挖掘算法(Aprior算法)的分析,针对其缺点并结合入侵检测数据的特殊性,设计了改进的Aprior算法用于序列模式挖掘算法,算法将数据属性分成多个等级,侧重于多属性的序列模式挖掘,算法首先寻找高频轴属性值事件,再迭代降低支持度并增加新的低频轴属性值,用于比较长的频繁项集。同时以网络数据和日志文件数据为实验基础,从算法的精确性和适应性方面进行了比较。 An improved sequential patterns mining algorithm based on Aprior algorithm for intrusion detection is designed. It classifies data by the properties and focus on the sequential patterns by the multiple properties. It is effective for the long frequent item sets and improves the accuracy of intrusion detection largely. Its properties of accuracy and adaptation have been verified by analysis of audit data from network record and log files.
作者 叶和平 尚敏
出处 《计算机技术与发展》 2008年第11期149-151,155,共4页 Computer Technology and Development
基金 广东省自然科学基金(04010589)
关键词 APRIOR算法 序列模式挖掘 入侵检测 数据挖掘 Aprior algorithm sequence patterns mining intrusion detection data mining
  • 相关文献

参考文献12

  • 1Defining D E. An intrusion detection model[ J ]. IEEE Trans on Software Engineering, 1987,13 (2) : 222 - 232. 被引量:1
  • 2Lane T, Brodley C E. An Application of Machine Learning to Anomaly Detection[R]. USA: Purdue University, 1997. 被引量:1
  • 3Hoang Xuan Dau, Hu J ieaxkun, Bertok P. A Multi - layer Model for Anomaly Intrtusion Detection Using Program Sequences of System Calls[ R ]. Australia: RMIT University, 2001. 被引量:1
  • 4Balajinath B, Raghavan S V. Intrusion Detection through learning behavior model[J].Computer communications, 2001 , 24(8):1202 - 1212. 被引量:1
  • 5Lec W.Stolfo S J. Data Mining Approaches for Intrusion Detection[R]. USA Columbia University, 1999. 被引量:1
  • 6Lee. A Data Mining Framework for Constructing Features and Models for Intrusion Detection System [D]. USA: Columbia University, 1999. 被引量:1
  • 7Kumar S,Spafford E H. An Application of Patter Matching in Intrusion Detection [P]. USA: Departnlent of Computer Sciencc. Purdue University, 1994. 被引量:1
  • 8Doak J.Intrusion Detection: The Application of a Feature lection-A Comparison of Algorithms and the Application of Wide Aroa.Network Analyzer[R].USA:Department of Computer Scicnce,University of Califomia,1992. 被引量:1
  • 9Lee W. Stroifo SJ.Data mining approaches for intrusion detection[C].//Proc of the 7th USENIX Security Symposium.San Antonio.TX:[s,n],1998. 被引量:1
  • 10Joshi M, Karypis G. A Universal Fomlulation of Sequential Pattems[R]. USA: Department of Computer Science, University of Minnesota, 1999. 被引量:1

同被引文献31

  • 1景永霞,王治和,苟和平.基于分布式数据库的关联规则挖掘算法[J].湛江师范学院学报,2007,28(6):74-77. 被引量:4
  • 2杨延娇,王治和.异常数据挖掘在Web服务器日志文件中的应用[J].西北师范大学学报(自然科学版),2008,44(6):32-34. 被引量:4
  • 3肖竟华,卢娜.基于网络的入侵检测系统的研究及实现[J].计算机技术与发展,2007,17(2):242-244. 被引量:9
  • 4中国互联网络发展状况统计报告[EB/OL].http://tech.qq.com/a/20080724/000277.htm.2008-9-27. 被引量:7
  • 5Kernmerer R A, Vigna G. Intrusion Detection:A Brief History and Overview[J]. Supplement to IEEE Computer ( IEEE Security & Privacy),2002,35(4):27-30. 被引量:1
  • 6Stolfo S J, Fan Wei, Lee Wenke, et al. Task description of Kddeup' 99[EB/OL]. 1999. http://kdd. its. uci. edu/databases/kddcup99/task. html. 被引量:1
  • 7Agrawal R, Srikant R. Mining Sequential Pattems[C]//Pro- ceedings of the llth International Conference on Data Engi- neering. Taipei, Taiwan, China : IEEE Press, 1995. 被引量:1
  • 8Srikant R, Agrawal R. Mining Sequential Patterns. Generali- zations and Performance Improvements [ R ]. IBM Almaden Research Center, 1995. 被引量:1
  • 9Chen Yen-Liang, Chinag Mei-Ching, Kao Ming-Yat. Discov- ering time-interval sequential in patterns databases [ J]. Ex- pert Systems with Application ,2003,25 (3) :343-354. 被引量:1
  • 10Tsai Chieh-Yuan, Chien Chun-Ju. An Optimized Classifica- tion Model for Time-Interval Sequences[ C]//Proceedings of the World Congress on Engineering. London:[ s. n. ] ,2010. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部