期刊文献+

弹塑性疲劳微弯裂纹CTOD及J积分问题 被引量:1

Problem of slightly curved fatigue elastoplastic crack tip opening displacement and J integral
下载PDF
导出
摘要 从理论上比较精确地研究了疲劳载荷作用下弯曲延伸裂纹尖端塑性区域边界上的交变正应力和交变剪应力的分布状况.综合考虑了疲劳作用应力、塑性区域交变正应力和交变剪应力,利用二阶摄动方法,研究分析了疲劳载荷作用下弯曲延伸裂纹尖端塑性区域的范围.利用二阶摄动方法与卡氏定理计算了疲劳载荷作用下弯曲延伸裂纹尖端张开位移的最大值及变化幅值.以弯曲延伸裂纹尖端塑性区域的边界曲线为积分回路,求解了疲劳载荷作用下弹塑性弯曲延伸裂纹尖端J积分的最大值与变化幅值.为有效地预测及驾驭疲劳载荷作用下工程结构裂纹的弯曲扩展提供了理论依据. The distribution of cyclic normal stresses and cyclic shear stresses on the boundaries of plastic area at fatigue curved extension crack tip has been studied theoretically and accurately. Plastic area at the tip of fatigue curved extension crack has been studied and analyzed. Maximum and amplitude of fatigue curved extension crack tip opening displacements are calculated by using the second order perturbation method, theorem of surname KA. Maximum and amplitude of fatigue curved extension crack tip J integral are calculated using the boundary curve of plastic area of original curved extension crack tip as an integral loop, where the effects of cyclic applied stresses, cyclic normal stresses and cyclic shear stresses on the boundaries of plastic area at fatigue curved extension crack tip are taken into considerations. And theoretical base for predicting and controlling curved extension crack growth in engineering structure under fatigue loads, is offered.
作者 杨大鹏 赵耀
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2008年第5期97-101,共5页 Engineering Journal of Wuhan University
关键词 疲劳作用应力 二阶摄动方法 弯曲延伸裂纹 积分回路 J积分 cyclic applied stresses second order perturbation solution curved extension crack integralloop J integral
  • 相关文献

参考文献16

  • 1Banichuk N V. Determination of the form of a curvilinear crack by small parameter technique [J]. Izv, An SSSR MTT,1970,7-2: 130-137. 被引量:1
  • 2Goldstein R V , Salganik R L. Plane problem of curvilinear cracks in an elastic solid [J]. Izv, An SSSR MTT, 1970,7-3:69-82. 被引量:1
  • 3Goldstein R V, Salganik R L. Brittle fracture of solids with arbitrary cracks [J]. Int. J. Fracture, 1974, 10:507-523. 被引量:1
  • 4Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. Int. J. Fracture, 1980,16 : 155-169. 被引量:1
  • 5Karihaloo B L, Keer L M, Nemat-Nasser S, Oranratnachai A. Approximate description of crack Kinking and curving[J]. J. Appl. Mech. , 1981,48:515-519. 被引量:1
  • 6Sumi Y, Nemat-Nasser S, Keer L M. On crack branching and curving in a finite body[J]. Int. J. Fracture, 1983,21:67-79, Erratum,Int, J. Fracture, 1984,24:159. 被引量:1
  • 7Sumi Y. A note on the first order perturbation solution of a straight crack with slightly branched and curved extension under a general geometric and loading condition[J]. Engng. Fracture Mech., 1986,24: 479-481. 被引量:1
  • 8Yoichi Sumi, Member. A second order perturbation solution of a Non-Collinear crack and its application to crack path prediction of brittle fracture in weldment[J]. J.S.N.A. Japan, 1989, June: 165. 被引量:1
  • 9Yoichi Sumi, Member. A second order perturbation solution of a Non-Collinear crack and its application to crack path prediction of brittle fracture in weldment[J]. J.S.N.A. Japan,1989, Dec. :166. 被引量:1
  • 10Wu C H. Explicit asymptotic solution for the maxi mum-energy release-rate problem[J]. Int. J. , Solids Structures, 1979,15:561-566. 被引量:1

二级参考文献1

共引文献27

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部