期刊文献+

基于LS-SVM城市水资源承载能力预测方法 被引量:2

Prediction model for city water resources carrying capacity based on least squares support vector machine
下载PDF
导出
摘要 水资源承载力是水资源安全战略研究中的一个基础课题,是水资源安全的基本度量[1]。准确预测水资源承载力,对国民经济发展规划、生态环境保护和水资源持续利用具有重要意义。该文提出了一种基于最小二乘支持向量机城市水资源承载能力预测模型,通过对具体的城市水资源承载能力预测实验,并与其他几种常见模型预测结果比较,表明该模型具有预测精度高、速度快、容易实现等优点,为我国城市水资源承载能力预测提供了一种有效的方法。 Study on carrying capacity of water resources is a fundamental project in strategic research of water resources safety, and the carrying capacity of water resources is the basic criterion for judging whether it is safe or not. Forecasting water resources carrying capacity accurately is important for planning state economy, protecting environment and using water resource in a sustainable way. The paper puts forward a new prediction model for water resources carrying capacity based on least squares support vector machine (LS-SVM). A concrete prediction experiment for water resources carrying capacity of a city was carried out. Compared with some other models,the model proposed in the paper proved to be higher in forecasting speed and accuracy, and moreover,it is easier to realize. It offers an effective method for predicting water resources carrying capacity.
出处 《水科学与工程技术》 2008年第B10期34-37,共4页 Water Sciences and Engineering Technology
基金 国家自然科学基金资助项目(70672096)
关键词 水资源承载力 最小二乘支持向量机 回归 预测 water resources carrying capacity least squares support vector machine regression prediction
  • 相关文献

参考文献7

二级参考文献58

共引文献67

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部