摘要
总可以在∧nR2n上定义两个对称的双线性型(Ωαβ)和(Jαβ),它们分别由R2n的体积元和R2n上的辛形式确定.特别,当n=2时,视(Ωαβ)和(Jαβ)为P5中的两个配极,我们证明了:存在这两个配极的绝对形的交集和Lie’s圆的集合之间的一一对应,并且,两个Lie′s圆同向相切当且仅当它们在P5中的像点关于(Jαβ)彼此共轭,此外,P5中的射影变换G保持(Ωαβ)不变当且仅当G=∧,∈PGL(4,R),又如果G还保持(Jαβ)不变,则必∈PGsp(4).于是,我们得到圆素几何的射影模式,这个几何空间的运动群是PGsp(4).
Two bilinear symmetric forms (Ω αβ ) and (J αβ ) , are defined on ∧ n R 2n , they are determined by the element of volume in R 2n and the symplectic form on R 2n respectively. In particular, when n=2 , we consider (Ω αβ ) and (J αβ ) as two polars on P 5 . It is proved that: There exists one-to-one map between the cross set of absolute of these two polars and the set of Lie′s circle in the plane, and two Lie′s circles are tangential along the same direction if and only if their images in P 5 are conjugate each other with respect to the polar ( J αβ ) , and what is more, the projective transformation G in P 5 preserves the polar (Ω αβ ) invariant if and only if G= g∧ g, g∈ PGL (4,R), and if G preserves also the polar (J αβ ) , then g∈ PGsp(4). Thus, we obtain the projective model of the circle′s geometry, the motion group of this geometric space is PGsp(4) .
出处
《数学进展》
CSCD
北大核心
1997年第6期507-514,共8页
Advances in Mathematics(China)