期刊文献+

圆素几何和射影配极

The Geometry of Lie′s Circles and the Projective Polar
下载PDF
导出
摘要 总可以在∧nR2n上定义两个对称的双线性型(Ωαβ)和(Jαβ),它们分别由R2n的体积元和R2n上的辛形式确定.特别,当n=2时,视(Ωαβ)和(Jαβ)为P5中的两个配极,我们证明了:存在这两个配极的绝对形的交集和Lie’s圆的集合之间的一一对应,并且,两个Lie′s圆同向相切当且仅当它们在P5中的像点关于(Jαβ)彼此共轭,此外,P5中的射影变换G保持(Ωαβ)不变当且仅当G=∧,∈PGL(4,R),又如果G还保持(Jαβ)不变,则必∈PGsp(4).于是,我们得到圆素几何的射影模式,这个几何空间的运动群是PGsp(4). Two bilinear symmetric forms (Ω αβ ) and (J αβ ) , are defined on ∧ n R 2n , they are determined by the element of volume in R 2n and the symplectic form on R 2n respectively. In particular, when n=2 , we consider (Ω αβ ) and (J αβ ) as two polars on P 5 . It is proved that: There exists one-to-one map between the cross set of absolute of these two polars and the set of Lie′s circle in the plane, and two Lie′s circles are tangential along the same direction if and only if their images in P 5 are conjugate each other with respect to the polar ( J αβ ) , and what is more, the projective transformation G in P 5 preserves the polar (Ω αβ ) invariant if and only if G= g∧ g, g∈ PGL (4,R), and if G preserves also the polar (J αβ ) , then g∈ PGsp(4). Thus, we obtain the projective model of the circle′s geometry, the motion group of this geometric space is PGsp(4) .
作者 林怡谋
出处 《数学进展》 CSCD 北大核心 1997年第6期507-514,共8页 Advances in Mathematics(China)
关键词 配极 辛变换 射影 射影几何 圆素几何 Lie′s circle polar symplectic transformation
  • 相关文献

参考文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部