期刊文献+

一种基于主分量特征的快速SAR目标识别方法 被引量:1

Fast SAR target recognition approach using PCA features
下载PDF
导出
摘要 实时性和识别率是评估SAR图像目标识别系统性能的两个主要指标。分析了影响这两个指标的关键因素,并以此为基础,提出了一种快速的SAR图像目标识别方法。该方法采用基于Hebb学习规则的自组织神经网络提取主分量特征,使用多层感知器神经网络(MLP NN)进行目标分类。实验对比分析表明,在识别率较高的同时,该方法具有内存需求少、运行速度快的特点,能用于实时处理。 The real-time ability and recognition rate are two primary goals for evaluating the performance of an SAR imagery target recognition system. The key factors which influence these two goals are analyzed. According to the analysis, a fast SAR target recognition approach is proposed, which utilizes an auto-organized neural network to extract the principal component features and a multi-layer neural perceptron network (MLP NN) as the classifier. The experimental results show that it consumes relatively less memory and runs very fast with a considerable recognition rate, thus can be used in the real-time situation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1855-1859,1943,共6页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60772045)
关键词 目标识别 特征提取 主分量分析 合成孔径雷达 神经网络 target recognition feature extraction PCA SAR neural network
  • 相关文献

参考文献12

  • 1Dudgeon D E, Lacoss R T. An overview of automatic target recognition[J]. The Lincoln Laboratory Journal, 1993, 6 (1) : 3 -10. 被引量:1
  • 2Diemunsch J, Wissinger J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: search technology for a robust ATR[C]//Proc. SPIE, 1998, 33370:481-492. 被引量:1
  • 3Kreithen D E, Halversen S D, Owirka G J. Discriminating targets from clutter[J]. The Lincoln Laboratory Journal, 1993, 6 (1): 25-51. 被引量:1
  • 4Jain A K, Duin R P, Mao J. Statistical pattern recognition: a review[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37. 被引量:1
  • 5孙即祥等编著..现代模式识别[M].长沙:国防科技大学出版社,2002:460.
  • 6DeVore M D, O'Sullivan J A. Perfromance complexity study of several approaches to ATR from SAR images[J].IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(2) : 632 - 648. 被引量:1
  • 7SIMon HYKIN.神经网络原理[M].叶世伟,史忠植译.北京:机械工业出版社,2004. 被引量:74
  • 8Zhao Q, Principe J C. Support vector machines for SAR automatic recognition[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2) : 643 - 654. 被引量:1
  • 9Sandirasegaram N M. Automatic target recognintion in SAR imagery using a MLP neural network[R]. De fence R&D Canada-Ottawa, Ottawa, 2002. 被引量:1
  • 10Zhao Q, Xu D, Principe J C. Pose estimation for SAR automatic target recognition[J]. Proceedings of the DARPA Image Understanding Workshop, California, 1998:827-831. 被引量:1

二级参考文献1

共引文献83

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部