期刊文献+

基于改进粒子群算法的BP网络在DTC系统中的转速辨识 被引量:6

Rotor Speed Identification on DTC System Based on BP Neural Network of Improved PSO Algorithms
下载PDF
导出
摘要 利用改进粒子群优化(PSO)算法优化BP神经网络的权值和阈值,有效地解决了BP算法易陷入局部极小值的缺点,能更快速的实现收敛,不仅具有广泛的映射能力,还明显提高了运算效率。通过对直接转矩控制(DTC)系统进行MATLAB/SIMULINK仿真研究,结果表明:基于PSO-BP神经网络构造的速度辨识器具有良好的辨识效果。 To optimize the parameters of BP neural network,a modified particle swarm optimization (PSO) algorithm can achieve convergence faster and is effective to solve the defect that other BP algorithms easily plunge into local solution. With comprehensive mapping ability,it also promotes the efficiency visibly.The simulation of Direct Torque Control (DTC) system based on PSO-BP neural network is performed using MATLAB/SIMULINK. The result proves that the performance of rotor speed identification is satisfactory.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第20期5519-5522,共4页 Journal of System Simulation
基金 辽宁省自然科学基金资助项目(20032032) 教育部“春晖计划”合作科研项目(Z2005-2-11008) 辽宁省教育厅高校科研项(20206331)
关键词 粒子群优化算法 BP神经网络 直接转矩控制 转速辨识 PSO, BP neural network, DTC, rotor speed identification
  • 相关文献

参考文献9

二级参考文献32

  • 1樊玮.粒子群优化方法及其实现[J].航空计算技术,2004,34(3):39-42. 被引量:16
  • 2连丽艳,王艳秋,焦丰.用神经网络实现对感应电机转速估计[J].微电机,2004,37(3):14-15. 被引量:2
  • 3王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 4[美]Z米凯利维茨著 周家驹 何险峰译.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000.. 被引量:3
  • 5[5]V. Tandon. NC End Milling Opimization Using Evolutionary Computation [ J ]. International Journal of Machine Tools and Manufacture, 2001,42: 595~ 605. 被引量:1
  • 6[7]F Zhang, D Xue. Optimal Concurrent Design Based upon Distributed Product Development Life-cycle Modeling[J]. Robotics and Computer Integrated Manufacturing, 2001, 17: 469~ 486. 被引量:1
  • 7[8]A R Cockshott, B E Hartman. Improving the Fermentation Medium for Echinocandin B Production Part Ⅱ: Particle Swarm Optimization[ J ]. Process Biochemistry, 2001, 36: 661 ~ 669. 被引量:1
  • 8Eberhart R C, ShJ Ytflmi. Comparison Between Genetic Algorithms and Particle Swarm Optimization[C]. Annual Conference on Evolutionary Programming, San Diego, 1998. 被引量:1
  • 9Kennedy J, Berthart R. Particle Swarm Optimization[C]. In: Proc. of IEEE Int. Conf. on Neural Network.s, Perth, 1995: 1942-1948. 被引量:1
  • 10Shi Yuhui, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]. In: Proc. of IEEE Int. Conf. on Evolutionary Computation. Seoul, 2001:101-106. 被引量:1

共引文献130

同被引文献71

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部