期刊文献+

一种引入复合形算子的变异粒子群算法 被引量:4

Adaptive mutation particle swarm algorithm using the complex method
下载PDF
导出
摘要 针对粒子群算法存在的收敛速度较慢和早熟收敛两大难题提出了一种新的改进型粒子群算法:搜索初期由粒子群算法进行全局寻优,当判断粒子群体已经进入局部最优区域时,引入复合形算法迅速达到局部收敛,从而有效地提高粒子群算法的局部搜索能力。同时引入自适应变异惯性权重提高摆脱局部最优的能力,增加种群的多样性。通过典型优化函数的实验验证,该算法是一种兼顾局部性能和全局搜索能力的高效算法。 To deal with the problem Of premature convergence,slow convergence velocity,a novel Panicle Swarm Optimization (PSO ) algorithm is proposed.At the beginning of the evolution,PSO can search global area and find the local range quickly,and then,complex method would locate the extremum in the local range rapidly.The self-adaptive mutation inertia weight is used in the whole evolvement to break away from the local extremum,which can effectively solve the premature convergence problem.The experiment results of two classic benchmark functions show that the algorithm can not only significantly improve the convergence velocity and precision in the evolutionary optimization,but also effectively enhance the global optimization power.
作者 符强
出处 《计算机工程与应用》 CSCD 北大核心 2008年第31期47-50,共4页 Computer Engineering and Applications
关键词 粒子群算法 复合形算法 自适应变异 Particle Swarm Optimization(PSO) complex method self-adaptive mutation
  • 相关文献

参考文献14

二级参考文献67

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3陆克中,王汝传,帅小应.保持粒子活性的改进粒子群优化算法[J].计算机工程与应用,2007,43(11):35-38. 被引量:14
  • 4王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107. 被引量:1
  • 5[1]Kennedy J, EberhartRC. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995.1942 ~ 1948. 被引量:1
  • 6[2]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [ C]. Nagoya, Japan: IEEE Press, 1995. 39~43. 被引量:1
  • 7[3]Eberhart R C, Simpson P K, Dobbins R W. Computational Intelligence PC Tools [M]. Boston, MA: Academic Press Professional,1996. 被引量:1
  • 8[4]Shi Y, Eberhart R C. A modified particle swarm optimizer [A].Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1998.303~308. 被引量:1
  • 9[5]Shi Y, Eberhart R C. Empirical study of particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1999.1945 ~ 1950. 被引量:1
  • 10[6]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Seoul, Korea: IEEE Press, 2001. 101 ~106. 被引量:1

共引文献715

同被引文献46

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部