期刊文献+

求解高维多模优化问题的自适应差分进化算法 被引量:7

Adaptive differential evolution for high-dimension multimodal optimization problems
下载PDF
导出
摘要 在基变量选择方差理论分析的基础上,提出一种自适应差分进化算法(ADE).ADE算法通过设计自适应收敛因子构建自调整的权重质心变异策略,同时在交叉策略中引入发射、收缩两种单纯形操作算子,保证算法全局搜索能力的同时,能有效提高算法后期的局部增强能力.30个优化问题的数值研究结果表明ADE算法具有比DE、DERL以及DERB三种算法更快的收敛速度和可靠性,尤其适合于高维多模优化问题的求解. Based on the theoretcal analysis of selective variance in mutation operator of original differential evolution (DE) algorithm, we proposed an adaptive differential evolution (ADE) algorithm to tackle the high-dimension multimodal optimization problems. In order to make a good tradeoff between the exploration and exploitation, ADE algorithm adopts an adaptive weighted centroid mutation strategy. Furthermore, modifications in mutation and crossover rule are suggested to the original DE algorithm to intensify the search around the global minima. These modifications intend to exploit the information derived from the previous function evaluations to improve the efficiency of the algorithm in the local search, without deteriorating the behavior of the original DE algorithm in the global search. Numerical experiments indicate that the resulting algorithm is considerably better and more efficient than the DE, DERL and DERB algorithms. Finally, a numerical study is carried out using a set of 30 test problems, many of which are inspired by practical applications.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第5期862-866,共5页 Control Theory & Applications
基金 国家863计划资助项目(2006AA04Z178) 浙江省科技论文重点项目(2008C23040).
关键词 多模优化 差分进化 选择方差 数值计算 multimodal optimization differential evolution selective variance numerical experiment
  • 相关文献

参考文献11

  • 1MORDECAL A. Nonlinear Programming Analysis and Methods[M]. New York, American: Prentice Hall, 1976. 被引量:1
  • 2NELDER J A, MEAD R A. A simplex method for function minimization[J]. CompttterJournal, 1965, 7(7): 308- 313. 被引量:1
  • 3WALSH G R. Methods of Optimization[M]. London, England: Wiley Press, 1975. 被引量:1
  • 4HORST R, TUY H. Global Optimization[M]//Deterministic Approaches. Berlin, Germany: Springer Verlag, 1990. 被引量:1
  • 5STORN R. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341- 359. 被引量:1
  • 6ALI M M, TORN A. Population set based global optimization algorithms: some modification and numerical studies[J]. Computer and Operations Research, 2004, 31(10): 1703 - 1725. 被引量:1
  • 7GOLDBERG D E. Genetic Algorithm in Search, Optimization and Machine Learning[M]. Boston, American: Addison-Wesley, 1989. 被引量:1
  • 8ALl M M, TORN A. A numerical comparison of some modified controlled random search algorithms[J]. Journal of Global Optimization, 1997, 11(4): 377 - 385. 被引量:1
  • 9KAELO P, ALI M M. A numerical study of some modified differential evolution algorithms[J]. European Journal of Operational Research, 2006, 169(3): 1176 - 1184. 被引量:1
  • 10ALI M M, KHOMPATRAPORN C, ZABINSKY Z B. A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems[J]. Journal of Global Optimization, 2005, 31(4): 635 - 672. 被引量:1

同被引文献104

  • 1王建辉,徐林,闫勇亮,顾树生.改进粒子群算法及其对热连轧机负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383. 被引量:27
  • 2吴亮红,王耀南,周少武,袁小芳.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458. 被引量:47
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:290
  • 4MILOSEVIC B, BEGOVIC M. Voltage-stability protection and control using a wide-area network of phasor measurement[J]. IEEE Transactions on Power Systems, 2003, 18(1): 121 - 127. 被引量:1
  • 5BIT S, QIN X H, YANG Q X. A novel hybrid state estimator for including synchronized phasor measurements[J] Electric Power Systems Research, 2008, 78(8): 1343 - 1352. 被引量:1
  • 6MILOSEVIC B, BEGOVIC M. Nondominated sorting genetic algorithm for optimal phasor measurement placement[J]. IEEE Transactions on Power Systems, 2003, 18(1): 69 - 75. 被引量:1
  • 7MONTICELLI A, WU F F. Network observability theory[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 4(5): 1042 - 1048. 被引量:1
  • 8SRINIVAS N, DEB K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, 2(3): 221 - 248. 被引量:1
  • 9MITRA K, GOPINATH R. Multi-objective optinaization of an industrial grinding operation using elitist nondominated sorting genetic algorithm[J]. Chemical Engineering Science, 2004, 59(2): 385 - 396. 被引量:1
  • 10SARKAR D, MODAK J M. Pareto-opfimal solutions for multi- objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm[J]. Chemical Engineering Science, 2005, 60(2): 481 - 492. 被引量:1

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部