期刊文献+

4p阶3度点传递图 被引量:3

CUBIC VERTEX-TRANSITIVE GRAPHS OF ORDER 4p
原文传递
导出
摘要 一个图称为点传递图,如果它的全自同构群在它的顶点集合上作用传递.证明了一个4p(p为素数)阶连通3度点传递图或者是Cayley图,或者同构于下列之一:广义Petersen图P(10,2),正十二面体,Coxeter图,或广义Petersen图P(2p,k),这里k^2=-1(mod 2p). A graph is said to be vertex-transitive, if its automorphism group is transitive on its vertices. In this paper, it is proven that a connected cubic vertex-transitive graph of order 4p(p a prime) is either a Cayley graph or isomorphic to one of the following: the generalized Petersen graph P(10, 2), the Dodecahedron, the Coxeter graph, or the generalized Petersen graph P(2p, k) where k^=-1mod 2p).
作者 周进鑫
出处 《系统科学与数学》 CSCD 北大核心 2008年第10期1245-1249,共5页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10571013) 北京交通大学科技基金(2008RC037)资助课题
关键词 点传递图 CAYLEY图 非Cayley点传递图. Vertex-transitive graph, Cayley graph, non-Cayely vertex-transitive graph.
  • 相关文献

参考文献1

二级参考文献16

  • 1[1]Biggs, N. L., Algebraic Graph Theory, Cambridge University Press, 1974. 被引量:1
  • 2[2]Conder, M. D. E. & Dobcsanyi, P., Trivalent symmetric graphs on up to 768 vertices, J. Combin.Math. Combin. Comput., 40(2002), 41-63. 被引量:1
  • 3[3]Biggs, N. L. & Smith, D. H., On trivalent graphs, Bull. London Math. Soc., 3(1971), 155-158. 被引量:1
  • 4[4]Conder, M. D. E. & Lorimer, P., Automorphism groups of symmetric graphs of valency 3, J. Combin.Theory, Ser. B, 47(1989), 60-72. 被引量:1
  • 5[5]Cheng, Y. & Oxley, J., On the weakly symmetric graphs of order twice aprime, J. Combin. Theory,Ser. B, 42(1987), 196-211. 被引量:1
  • 6[6]Du, S. F., Kwak, J. H. & Xu, M. Y., Linear criteria for lifting automorphisms of elementary abelian regular coverings, Linear Algebra and Its Applications, 373C(2003), 101-119. 被引量:1
  • 7[7]Djokovie, D. Z. & Miller, G. L., Regular groups of automorphisms of cubic graphs, J. Combin. Theory,Ser. B, 29(1980), 195-230. 被引量:1
  • 8[8]Feng, Y. Q. & Kwak, J. H., Cubic s-Regular Graphs, Com2MaC Lecture Note Series, No. 7, Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology, 2002,85 pages. 被引量:1
  • 9[9]Frucht, R., A one-regular graph of degree three, Canad. J. Math., 4(1952), 240-247. 被引量:1
  • 10[10]Gorenstein, D., Finite Simple Groups, Plenum Press, New York, 1982. 被引量:1

共引文献2

同被引文献2

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部