摘要
一个图称为点传递图,如果它的全自同构群在它的顶点集合上作用传递.证明了一个4p(p为素数)阶连通3度点传递图或者是Cayley图,或者同构于下列之一:广义Petersen图P(10,2),正十二面体,Coxeter图,或广义Petersen图P(2p,k),这里k^2=-1(mod 2p).
A graph is said to be vertex-transitive, if its automorphism group is transitive on its vertices. In this paper, it is proven that a connected cubic vertex-transitive graph of order 4p(p a prime) is either a Cayley graph or isomorphic to one of the following: the generalized Petersen graph P(10, 2), the Dodecahedron, the Coxeter graph, or the generalized Petersen graph P(2p, k) where k^=-1mod 2p).
出处
《系统科学与数学》
CSCD
北大核心
2008年第10期1245-1249,共5页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10571013)
北京交通大学科技基金(2008RC037)资助课题