期刊文献+

自适应机翼技术的分类和实现途径 被引量:24

Classification and Realization Methodology of Adaptive Wings
下载PDF
导出
摘要 自适应机翼技术研究可分为通过机翼结构较小尺度变形的流动控制设计和较大尺度改变机翼几何构型的自适应结构设计两个范畴。改变机翼构型的自适应结构又包括可变前后缘结构、扭转机翼盒段结构、可变展弦比机翼结构这三种实现方式。根据目前自适应机翼技术的研究现状,归纳出了实现机翼自适应功能的两种途径,其中,采用智能材料结构进行驱动控制的研究代表了自适应机翼技术的发展趋势,而基于传统材料结构的自适应机翼技术则在现阶段更具有工程应用价值。 The research activities of adaptive wing technology can be classified into two catalogues, one is the flow control design by small scale deformation of wing structure, the other is the adaptive structure design by changing the geometric configuration of wing in large scale. The adaptive structure of altering the wing configuration in- volves three realization methods, variable leading/trailing edge structures, twisting wing box structure and variable aspect ratio wing. According to the up-to-date progress of adaptive wing technology, two realization approaches for adaptive capacity of wing are summarized, in which the study on actuation and control of wing deformation using smart materials and structures represent the development trend of adaptive wing, while the adaptive wing technology utilizing traditional materials and structures is more applicable in engineering at present.
作者 杨智春 解江
出处 《飞行力学》 CSCD 北大核心 2008年第5期1-4,9,共5页 Flight Dynamics
基金 国家自然科学基金资助项目(10672135) 教育部新世纪优秀人才支持计划资助项目(NCET-04-0965)
关键词 自适应机翼 流动控制 多控制丽 保形控制面 智能材料 adaptive wing flow control multi-control surfaces conformal control surface smart material
  • 相关文献

参考文献16

  • 1Rossi M, Austin F, Van Nostrand W. Active Rib Experiment for Shape Control of an Adaptive Wing [ A ]. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference [ C ]. Washington, D C, 1993:233-266. 被引量:1
  • 2Bein Th, Hanselka H, Breitbach E. An Adaptive Spoiler to Control the Transonic Shock [ J ]. Smart Material Structure ,2000, (9) : 141-148. 被引量:1
  • 3Munday D ,Jacob J. Active Control of Separation on a Wing with Oscillating Camber [J]. Journal of Aircraft,2002,39 (1) :187-189. 被引量:1
  • 4Streleca J K, Lagoudasa D C. Fabrication and Testing of a Shape Memory Alloy Actuated Reconfigurable Wing [ A ]. Smart Structures and Materials 2002 : Smart Structures and Integrated Systems [ C ]. Proceedings of SPIE, 2002: 267-280. 被引量:1
  • 5Clarke R, Allen M J, Dibley R P. Flight Test of the F/A- 18 Active Aeroelastic Wing Airplane [ A ]. AIAA Atmospheric Flight Mechanics Conference and Exhibit [ C ]. San Francisco, CA, 2005 : 1-31. 被引量:1
  • 6Shipley Jr N, Gopalarathnam A. Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag [ A ]. 44th AIAA Aerospace Sciences Meeting and Exhibit [ C ]. Reno, Nevada,2006 : 1-14. 被引量:1
  • 7Eller D, Heinze S. An Approach to Induced Drag Reduction with Experimental Evaluation [ J ]. AIAA Journal of Aircraft ,2005,42 (6) : 1478-1485. 被引量:1
  • 8Weisshaar T, Duke K. Induced Drag Reduction Using Aeroelastic Tailoring with Adaptive Control Surfaces [ J]. Journal of Aircraft ,2006,43 ( 1 ) : 157-164. 被引量:1
  • 9Gilbert W. Mission Adaptive Wing System for Tactical Aircraft[ J ]. Journal of Aircraft, 1981,18 (7) :597-602. 被引量:1
  • 10Lu K, Kota S. Design of Compliant Mechanisms for Morphing Structural Shapes [ J]. Journal of Intelligent Material Systems and Structures,2003,14(6) :379-391. 被引量:1

同被引文献206

引证文献24

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部