期刊文献+

一类具有脉冲的传染病模型分析

Analysis of an Impulsive Epidemic Model
下载PDF
导出
摘要 脉冲微分方程广泛应用在种群动力学和传染病动力学中,本文通过引入脉冲效应,建立了一个具有脉冲的传染病模型,运用Floquet理论和分支理论研究其解的性态,得到平凡周期解和正周期解的存在性和稳定性的充分条件. Impulsive differential equations are extensively applied in population dynamics and epidemic dynamics. With the introduction of impulsive effects, an impulsive epidemic model is established in this paper. The properties of solutions for the model are studied by means of Floquet theory and Bifurcation theory. Sufficient conditions for the existence and stability of trivial and positive periodic solutions are obtained.
作者 姚志健
出处 《昆明理工大学学报(理工版)》 2008年第5期109-112,共4页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 安徽省教育厅自然科学项目(项目编号:KJ2008B236)
关键词 脉冲微分方程 传染病模型 周期解 分支理论 impulse differential equations epidemic model periodic solution Bifurcation theory
  • 相关文献

参考文献6

  • 1Lakmeche A, Arino O. Bifurcation of non - trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[ J ]. Dynamics of Continuous, Discrete and Impulsive Systems. 2000,7:265 -287. 被引量:1
  • 2Looss G, Joseph D. Elementary stability and bifurcation Theory[ M ]. New York:Springer, 1980. 被引量:1
  • 3Laksmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations [ M ]. Singapore: World Scientific, 1989. 被引量:1
  • 4阮炯..差分方程和常微分方程[M],2002.
  • 5傅希林,闫宝强,刘衍胜著..脉冲微分系统引论[M].北京:科学出版社,2005:309.
  • 6Drumi Bainov, Pavel Simeonov. Impulsive differential equation : Periodic solutions and applications [ M ]. Longman Scientific and Technical, 1993. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部