摘要
脉冲微分方程广泛应用在种群动力学和传染病动力学中,本文通过引入脉冲效应,建立了一个具有脉冲的传染病模型,运用Floquet理论和分支理论研究其解的性态,得到平凡周期解和正周期解的存在性和稳定性的充分条件.
Impulsive differential equations are extensively applied in population dynamics and epidemic dynamics. With the introduction of impulsive effects, an impulsive epidemic model is established in this paper. The properties of solutions for the model are studied by means of Floquet theory and Bifurcation theory. Sufficient conditions for the existence and stability of trivial and positive periodic solutions are obtained.
出处
《昆明理工大学学报(理工版)》
2008年第5期109-112,共4页
Journal of Kunming University of Science and Technology(Natural Science Edition)
基金
安徽省教育厅自然科学项目(项目编号:KJ2008B236)
关键词
脉冲微分方程
传染病模型
周期解
分支理论
impulse differential equations
epidemic model
periodic solution
Bifurcation theory