期刊文献+

双层规划问题的粒子群算法研究 被引量:13

Particle swarm optimization for solving bilevel programming problems
下载PDF
导出
摘要 提出一种求解一般双层规划问题的层次粒子群算法.和传统的针对特定类型的问题或者基于特定假定假设条件所设计的算法不同,所提出的算法是一个层次算法框架,它通过模拟双层规划的决策过程来直接求解一般双层规划问题.层次粒子群算法将求解一般双层规划问题转化为通过两个变形粒子群算法的交互迭代来求解上下两层规划问题.同其它算法的实验结果比较表明层次粒子群算法是一个有效的求解一般双层规划问题的方法. In this paper we propose a hierarchical particle swarm optimization method to solve general bilevel programming problems. Unlike traditional algorithms designed for solving specific types of bilevel programs, the proposed approach provides a hierarchical algorithm framework, which solves the general bilevel programs by simulating its decision process. In the proposed algorithm, solving for general bilevel programs is transformed into iteratively solving for the upper-level and lower-level programming problems using two variants of particle swarm optimization. The experimental results of the proposed algorithm, as compared with those of other algorithms, show that the proposed hierarchical particle swarm optimization is another effective algorithm for solving general bilevel programming problems.
作者 李相勇 田澎
出处 《管理科学学报》 CSSCI 北大核心 2008年第5期41-52,109,共13页 Journal of Management Sciences in China
关键词 粒子群算法 现代启发式算法 双层规划问题 约束优化 particle swarm optimization metaheuristic bilevel programming problem constrained optimization
  • 相关文献

参考文献20

  • 1Dempe S. Foundations of Bilevel of Programming [ M ]. Volume 61 of Nonconvex optimization and its application Boston: Kluwer Academic Publisher, 2002. 被引量:1
  • 2Colson B, Marcotte P, Savard G. Bilevel programming: A survey [ J ]. 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2005, 3: 87--107. 被引量:1
  • 3Candler W, Townsley R. A linear two-level programming problem[J]. Computers and Operations Research, 1982, 9 : 59--76. 被引量:1
  • 4Bard J F, Moore J T. A branch and bound algorithm for the bilevel programming problem [ J ]. SIAM Journal of Scientific and Statistical Computing, 1990, 1 : 281--292. 被引量:1
  • 5LIU Guoshan 1, HAN Jiye 2 and WANG Shouyang 3 1. Department of Mathematics, Beijing Normal University, Beijing 100875, China,2. Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China,3. Institute of Systems Science, Chi.A trust region algorithm for bilevel programing problems[J].Chinese Science Bulletin,1998,43(10):820-824. 被引量:3
  • 6Mathieu R, Pittard L, Anandalingam G. Genetic algorithm based approach to bi-level linear programming[ J ]. Operations Research, 1994, 28: 1--21. 被引量:1
  • 7Genderau M, Marcotte P, Savard G. A hybrid tabu-ascent algorithm for the linear bilevel programming problem[ J]. Journal of Global Optimization, 1996, 8 : 217--233. 被引量:1
  • 8Wang Y, Jiao Y, Li H. An evolutionary algorithm for solving ninlinear bilevel programming based on a new constraint-handling scheme[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2005, 35: 221--232. 被引量:1
  • 9Sahin K H, Ciric A R. A dual temperature simulated annealing approach for solving bilevel programming problems [ J ]. Computers and Chemical Engineering, 1998, 23 : 11--25. 被引量:1
  • 10Kennedy J, Eberhart R C. Particle Swarm Optimization[ C]. Proceeding of IEEE International Conference on Neural Networks. Piscataway, N J: IEEE Service Center, 1995. 1942--1948. 被引量:1

共引文献2

同被引文献123

引证文献13

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部